【題目】已知函數(shù)f(x),若關(guān)于x的方程f(x)kx恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是(  )

A. B.

C. D.

【答案】D

【解析】

由已知可將問題轉(zhuǎn)化為:yf(x)的圖象和直線ykx4個交點,作出圖象,由圖可得:點(1,0)必須在直線ykx的下方,即可求得:k;再求得直線ykxyln x相切時,k;結(jié)合圖象即可得解.

若關(guān)于x的方程f(x)kx恰有4個不相等的實數(shù)根,

yf(x)的圖象和直線ykx4個交點.作出函數(shù)yf(x)的圖象,如圖,

故點(1,0)在直線ykx的下方.

k×10,解得k.

當(dāng)直線ykxyln x相切時,設(shè)切點橫坐標(biāo)為m,

k,∴m.

此時,k,f(x)的圖象和直線ykx3個交點,不滿足條件,

故所求k的取值范圍是,

故選D..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)內(nèi)有極值,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若在定義域內(nèi)單調(diào)遞增,求的值;

2)討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐ABCD中,點EBD上,EAEBECED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AMCN,則當(dāng)四面體CEMN的體積取得最大值時,三棱錐ABCD的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

1)求證:;

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟(jì)創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應(yīng)政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進(jìn)行合理定價,將該款手機按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(千元)

銷量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;

(2)用(1)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個子,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中的估計值分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求處的切線方程;

2)求證:;

3)求證:有且僅有兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為4的正方形,平面分別為的中點.

1)證明:平面.

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強學(xué)生法治觀念,營造學(xué)憲法、知憲法、守憲法的良好校園氛圍,某學(xué)校開展了憲法小衛(wèi)士活動,并組織全校學(xué)生進(jìn)行法律知識競賽.現(xiàn)從全校學(xué)生中隨機抽取50人,統(tǒng)計他們的競賽成績,并得到如表所示的頻數(shù)分布表.

分?jǐn)?shù)段

人數(shù)

5

15

15

12

(Ⅰ)求頻數(shù)分布表中的的值,并估計這50名學(xué)生競賽成績的中位數(shù)(精確到0.1);

(Ⅱ)將成績在內(nèi)定義為合格,成績在內(nèi)定義為不合格”.請將列聯(lián)表補充完整.

合格

不合格

合計

高一新生

12

非高一新生

6

合計

試問:是否有95%的把握認(rèn)為法律知識的掌握合格情況是否是高一新生有關(guān)?說明你的理由;

(Ⅲ)在(Ⅱ)的前提下,在該50人中,按合格與否進(jìn)行分層抽樣,隨機抽取5人,再從這5人中隨機抽取2人,求恰好2人都合格的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

同步練習(xí)冊答案