17.已知棱長為6的正方體ABCD-A1B1C1D1中,P、M分別為線段BD1、B1C1上的點(diǎn),若$\frac{BP}{P{D}_{1}}$=2,則三棱錐M-PBC的體積為24.

分析 利用直線與平面平行,轉(zhuǎn)化所求幾何體的體積為同底面高相等的棱錐的體積,即可求出三棱錐M-PBC的體積.

解答 解:∵棱長為3的正方體ABCD-A1B1C1D1中,
P、M分別為線段BD1,B1C1上的點(diǎn),BP=2PD1
∵幾何體是正方體,∴B1M∥BC,
∴M到面PBC的距離與B1到面PBC的距離相等,
三棱錐M-PBC的體積轉(zhuǎn)化為三棱錐P-B1BC的體積,
正方體的棱長為6,
BP=2PD1,P到平面B1BC的距離為4,
∴VM-PBC=${V}_{P-B{B}_{1}C}$=$\frac{1}{3}$×$\frac{1}{2}$×6×6×4=24.
故答案為:24.

點(diǎn)評(píng) 本題考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地化空間問題為平面問題,考查轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}f(x-5),x>2\\ a{e^x},-2≤x≤2\\ f(-x),x<-2\end{array}$,若f(-2016)=e2,則a=( 。
A.eB.1C.-1D.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:-2≤x≤10;命題q:1-m≤x≤1+m,若p是q的充分不必要條件,則實(shí)數(shù)m的取值范圍為m≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若曲線y=sinx(0<x<π)在點(diǎn)(x0,sinx0)處的切線與直線y=$\frac{1}{2}$x+5平行,則x0的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知α、β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“m⊥β”是“α⊥β”的充分不必要條件(選填“充分不必要條件”、“必要不充分條件”、“充要條件”或“既不充分又不必要條件”中的一種).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{4-{x}^{2}}-2,(-2≤x<0)}\\{|{x}^{2}-x|,(x≤x≤2)}\end{array}\right.$的圖象與x軸及x=±2所圍成的封閉圖形的面積為(  )
A.5-πB.1+πC.π-3D.1-π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知斜率為3的直線l與雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)交于A,B兩點(diǎn),若點(diǎn)P(6,2)是AB的中點(diǎn),則雙曲線C的離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x2-4x+3>0},B={x|2x-3>0},則A∩B=(  )
A.$(-1,\frac{3}{2})$B.(-3,+∞)C.(3,+∞)D.$(\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=($\frac{1}{3}$)|x|-a-1有零點(diǎn),則a的取值范圍是( 。
A.-1<a≤0B.-1<a<0C.a>-1D.0<a≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案