已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn;
(Ⅱ) 設(shè)數(shù)列{log
2
an}的前n項(xiàng)和為Tn.求使Tn>bn的最小正整數(shù)n的值.
(Ⅰ)∵等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*,
∴a1=S1=2-a,
a2=(22-a)-(2-a)=2,
a3=(23-a)-(22-a)=4,
a22=a1a3,
∴22=(2-a)•4,解得a=1,
an=2n-1
∵公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列,
b1=3
(b4+5)2=(b2+5)(b8+5)
,
∴(8+3d)2=(8+d)(8+7d),
解得d=0(舍),或d=8,
∴bn=8n-5,n∈N*
(Ⅱ)∵an=2n-1,∴log
2
an=log
2
(2n-1)
=2(n-1),
∴數(shù)列{log
2
an}的前n項(xiàng)和
Tn=2(1-1)+2(2-1)=2(3-1)+2(4-1)+…+2(n-1)
=2[0+1+2+3+…+(n-1)]
=2×
n(n-1)
2

=n(n-1).
∵bn=8n-5,Tn>bn,
∴n(n-1)>8n-5,
∵n∈N*,∴n≥9,
∴使Tn>bn的最小正整數(shù)n的值是9.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案