【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時,每噸為2.10元,當(dāng)用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費(fèi)y元.已知甲、乙兩用戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)如甲、乙兩戶該月共交水費(fèi)40.8元,分別求出甲、乙兩戶該月的用水量和水費(fèi).
【答案】(1)y= ,(2)甲用戶用水量為5x=10噸,付費(fèi)S1=4×2.1+6×3=26.40(元);乙用戶用水量為3x=6噸,付費(fèi)S2=4×2.1+2×3=14.40(元).
【解析】試題分析:(1)函數(shù)模型的應(yīng)用考察,本題考察分段函數(shù)模型,由題得到每段的分類情況: ; 且; ,解出各自的解析式,最后寫成分段函數(shù);(2)分段解函數(shù)方程,注意解是否符合各自的分段要求即可。
試題解析:
(1)當(dāng)甲的用水量不超過4噸時,即,乙的用水量也不超過4噸,
;
當(dāng)甲的用水量超過4噸,乙的用水量不超過4噸時,即且,
.
當(dāng)乙的用水量超過4噸時,即, ,
所以 ,
(2)由于在各段區(qū)間上均為單調(diào)遞增函數(shù),
當(dāng)時, ;
當(dāng)時, ;
當(dāng)時,令,解得,
所以甲用戶用水量為噸,付費(fèi) (元);乙用戶用水量為噸,付費(fèi) (元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù)y=lg(x2+2x+a)的定義域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)f(x)=lg[(a2-1)x2+(2a+1)x+1],若f(x)的定義域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+1-3Sn=1.
(1) 求證:數(shù)列{an}為等比數(shù)列;
(2) 數(shù)列{an}是否存在一項(xiàng)ak,使得ak恰好可以表示為該數(shù)列中連續(xù)r(r∈N*,r≥2)項(xiàng)的和?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是.
(1)求a的值;
(2)能否找到一點(diǎn)P,使得P點(diǎn)同時滿足下列三個條 件:
①P是第一象限的點(diǎn);
②P 點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;
③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是∶.若能,求P點(diǎn)坐標(biāo);若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,根據(jù)下列條件解三角形,其中有兩個解的是( )
A. b="10," A=450, C=600 B. a=6, c=5, B=600
C. a=7, b=5, A=600 D. a=14, b="16," A=450
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【湖南省2017屆高三長郡中學(xué)、衡陽八中等十三校重點(diǎn)中學(xué)第一次聯(lián)考數(shù)學(xué)(理)】
已知函數(shù).
(1)當(dāng)時,試求函數(shù)圖像過點(diǎn)的切線方程;
(2)當(dāng)時,若關(guān)于的方程有唯一實(shí)數(shù)解,試求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有兩個極值點(diǎn),且不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中
(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若曲線僅在兩個不同的點(diǎn),處的切線都經(jīng)過點(diǎn),其中,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com