在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求證:BC⊥AA1
(2)若M,N是棱BC上的兩個(gè)三等分點(diǎn),求證:A1N平面AB1M.
證明:(Ⅰ)因?yàn)椤螦CB=90°,所以AC⊥CB,
又側(cè)面ACC1A1⊥平面ABC,且平面ACC1A1∩平面ABC=AC,BC?平面ABC,所以BC⊥平面ACC1A1,
又AA1?平面ACC1A1,所以BC⊥AA1
(II)連接A1B,交AB1于O點(diǎn),連接MO,
在△A1BN中,O,M分別為A1B,BN的中點(diǎn),所以O(shè)MA1N
又OM?平面AB1M,A1N不屬于平面AB1M,
所以A1N平面AB1M.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

棱長為a的正方體A1B1C1D1-ABCD中,O為面ABCD的中心.
(1)求證:AC1⊥平面B1CD1;
(2)求四面體OBC1D1的體積;
(3)線段AC上是否存在P點(diǎn)(不與A點(diǎn)重合),使得A1P面CC1D1D?如果存在,請(qǐng)確定P點(diǎn)位置,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖四棱錐P-ABCD中,ABCE為菱形,E、G、F分別是線段AD、CE、PB的中點(diǎn).求證:FG平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點(diǎn),現(xiàn)將△AED沿DE折起,使點(diǎn)A到點(diǎn)P處,滿足PB=PC,設(shè)M、H分別為PC、DE的中點(diǎn).
(1)求證:BM平面PDE;
(2)線段BC上是否存在一點(diǎn)N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是線段EF的中點(diǎn).
(1)證明:CM平面DFB
(2)求異面直線AM與DE所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:正方體ABCD-A1B1C1D1,AA1=2,E為棱CC1的中點(diǎn).
(1)求證:B1D1⊥AE;
(2)求證:AC平面B1DE;
(3)(文)求三棱錐A-BDE的體積.
(理)求三棱錐A-B1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點(diǎn)E,F(xiàn)分別是線段PB,AD的中點(diǎn)
(1)求證:FE平面PCD;
(2)求異面直線DE與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱PD⊥底面ABCD,PD=BC,E是PC的中點(diǎn),求證:PA平面EDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(y的的7•海南)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=9的°,O為BC中點(diǎn).
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案