4.已知f($\frac{x-1}{x+1}$)=-x-1.
(1)求f(x);
(2)求f(x)在區(qū)間[2,6]上的最大值和最小值.

分析 (1)令t=$\frac{x-1}{x+1}$,則x=$\frac{-t-1}{t-1}$,代入即可得到f(x)的解析式;
(2)運(yùn)用定義判斷f(x)在[2,6]的單調(diào)性,計(jì)算即可得到所求函數(shù)的最值.

解答 解:(1)令t=$\frac{x-1}{x+1}$,則x=$\frac{-t-1}{t-1}$,
∴f(t)=$\frac{2}{t-1}$,
∴f(x)=$\frac{2}{x-1}$(x≠1)…(4分)
(2)任取x1,x2∈[2,6],且x1<x2,
f(x1)-f(x2)=$\frac{2}{{x}_{1}-1}$-$\frac{2}{{x}_{2}-1}$=$\frac{2({x}_{2}-{x}_{1})}{({x}_{1}-1)({x}_{2}-1)}$,
∵2≤x1<x2≤6,∴(x1-1)(x2-1)>0,2(x2-x1)>0,
∴f(x1)-f(x2)>0,
∴f(x)在[2,6]上單調(diào)遞減,…(10分)
∴當(dāng)x=2時(shí),f(x)max=2,當(dāng)x=6時(shí),f(x)min=$\frac{2}{5}$…(12分)

點(diǎn)評 本題考查函數(shù)的解析式的求法,考查函數(shù)的最值的求法,注意運(yùn)用函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-2x+3,x>0}\\{-{x^2}+ax-3,x<0}\end{array}}$為奇函數(shù),則實(shí)數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在正四棱錐P-AMDE,底面AMDE的邊長為2,側(cè)棱PA=$\sqrt{5}$,B,C分別
為AM,MD的中點(diǎn).F為棱PE的中點(diǎn),平面ABF與棱PD,PC,PM分別交于點(diǎn)G,H,K.
(1)求證:AB∥FG;
(2)求正四棱錐P-AMDE的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},若A∩B?∅,A∩C=∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用秦九韶算法計(jì)算多項(xiàng)式f(x)=12+35x-8x2+6x4+5x5+3x6在X=-4時(shí)的值時(shí),V3的值為( 。
A.-144B.-136C.-57D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=-2,S4=-4,若Sn取得最小值,則n的值為( 。
A.n=2B.n=3C.n=2或n=3D.n=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z滿足zi-z=4+2i的復(fù)數(shù)z為(  )
A.3-iB.1+3iC.3+iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)是(-∞,+∞)上的減函數(shù),則不等式f(2)<f(2x+1)的解集是( 。
A.$(0,\frac{1}{2})$B.$(-∞,\frac{1}{2})$C.$(\frac{1}{2},+∞)$D.$(-∞,0)∪(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)與函數(shù)g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=x3+x2+1,則f(1)-g(1)=1.

查看答案和解析>>

同步練習(xí)冊答案