13.已知f(x)=$\left\{\begin{array}{l}{2x-1(x≥2)}\\{-{x}^{2}+3x(x<2)}\end{array}\right.$,則f(-4)+f(4)的值為(  )
A.-21B.-32C.-2D.0

分析 由題意分別求出f(-4)和f(4),由此能求出f(-4)+f(4)的值.

解答 解:∵f(x)=$\left\{\begin{array}{l}{2x-1(x≥2)}\\{-{x}^{2}+3x(x<2)}\end{array}\right.$,
∴f(-4)=-(-4)2+3×(-4)=-28,
f(4)=2×4-1=7,
∴f(-4)+f(4)=-28+7=-21.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.不等式|x|+|y|≤4所表示的平面區(qū)域的面積為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)+g(x)=ex,
(Ⅰ)求f(x),g(x)的解析式;
(Ⅱ)證明g(x)在x∈(0,+∞)為增函數(shù);
(Ⅲ)求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.直線y=x+b平分圓x2+y2+4x-4y-8=0的周長(zhǎng),則b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(cos15°,sin15°),$\overrightarrow$=(cos75°,sin75°),則|a-2b|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)P是拋物線x=$\frac{1}{4}$y2上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(-1,2)的距離與點(diǎn)P到y(tǒng)軸的距離之和的最小值為(  )
A.$2\sqrt{2}$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,已知棱長(zhǎng)為4的正方體ABCD-A'B'C'D',M是正方形BB'C'C的中心,P是△A'C'D內(nèi)(包括邊界)的動(dòng)點(diǎn),滿足PM=PD,則點(diǎn)P的軌跡長(zhǎng)度為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=ln(1+x),g(x)=a•$\frac{{{x^2}+2x}}{1+x}$(a∈R).
(1)若函數(shù)h(x)=f(x)-g(x)在定義域內(nèi)單調(diào)遞減,求a的取值范圍;
(2)設(shè)n∈N*,證明:(1+$\frac{1}{n^2}}$)(1+$\frac{2}{n^2}}$)…(1+$\frac{n}{n^2}}$)<e${\;}^{\frac{1}{4}}}$(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知單位向量${\vec e_1}$,${\vec e_2}$的夾角為α,且cosα=$\frac{1}{3}$,若向量$\vec a$=3${\vec e_1}$-2${\vec e_2}$,則|$\vec a$|=( 。
A.2B.3C.9D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案