設(shè)橢圓
x2
a2
+
y2
b2
=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為( 。
A.
2
ab
B.
2
2
ab
C.
1
2
ab
D.2ab
由于點P是橢圓
x2
a2
+
y2
b2
=1和上的在第一象限內(nèi)的點,
 設(shè)P為(acosa,bsina)即x=acosa y=bsina (0<a<π),
這樣四邊形OAPB的面積就可以表示為兩個三角形OAP和OPB面積之和,
對于三角形OAP有面積S1=
1
2
absinα,對于三角形OBP有面積S2=
1
2
abcosα
∴四邊形的面積S=S1+S2=
1
2
ab(sinα+cosα)
=
2
2
absin(a+
π
4

其最大值就應(yīng)該為
2
2
ab,
并且當且僅當a=
π
4
時成立.所以,面積最大值
2
2
ab.
故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,A是橢圓上的一點,C,原點O到直線AF1的距離為
1
3
|OF1|

(Ⅰ)證明a=
2
b
;
(Ⅱ)求t∈(0,b)使得下述命題成立:設(shè)圓x2+y2=t2上任意點M(x0,y0)處的切線交橢圓于Q1,Q2兩點,則OQ1⊥OQ2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的動點Q,過動點Q作橢圓的切線l,過右焦點作l的垂線,垂足為P,則點P的軌跡方程為(  )
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P是橢圓
x2a2
+y2=1   (a>1)
短軸的一個端點,Q為橢圓上一個動點,求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•即墨市模擬)設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)-1<a<-
1
2
,則橢圓
x2
a2
+
y2
(a+1)2
=1
的離心率的取值范圍是(  )

查看答案和解析>>

同步練習冊答案