觀察下列表格,探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的性質(zhì),
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)請觀察表中y值隨x值變化的特點,完成以下的問題.
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.
當x=
2
2
時,y最小=
4
4

(2)證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)遞減.
(3)函數(shù)f(x)=x+
4
x
(x<0)
時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)
分析:(1)根據(jù)表格可求得函數(shù)的單調(diào)區(qū)間,根據(jù)單調(diào)性可求得最小值;
(2)直接利用單調(diào)性的定義進行證明即可;
(3)根據(jù)(1)可得函數(shù)的最值,然后根據(jù)奇函數(shù)的性質(zhì)可得結(jié)論.
解答:解:(1)根據(jù)表格可知,f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
所以x=2時,f(x)有最小值f(2)=4;
(2)證明:設2>x2>x1>0,則f(x2)-f (x1)=(x2+
4
x2
)-(x1+
4
x1
)=
(x2-x1)(x1x2-4)
x1x2

∵2>x2>x1>0,∴x2-x1>0,x1x2-4<0,
∴f(x2)-f (x1)<0,即f(x2)<f(x1).
∴f(x)在(0,2)上單調(diào)遞減;
(3)由(1)知,f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
f(x)在∈(0,+∞)的最小值為f(2)=4,
又f(x)=x+
4
x
為奇函數(shù),所以x<0時,f(x)有最大值f(-2)=-4.
故答案為:(2,+∞),2,4.
點評:本題主要考查函數(shù)單調(diào)性的性質(zhì)及其證明,以及函數(shù)的奇偶性的應用,同時考查了分析問題的能力,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應的x的值,列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
請觀察表中y值隨x值變化的特點,完成下列問題:
(1)若函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在
[2,+∞)
[2,+∞)
上遞增;
(2)當x=
2
2
時,f(x)=x+
4
x
,(x>0)的最小值為
4
4
;
(3)試用定義證明f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減;
(4)函數(shù)f(x)=x+
4
x
,(x<0)有最值嗎?是最大值還是最小值?此時x為何值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學探究函數(shù)f(x)=x+
4
x
(x>0)的最小值,并確定相應的x的值.先列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請觀察表中y值隨x值變化的特點,完成下列問題:((1)(2)問的填空只要寫出結(jié)果即可)
(1)若x1x2=4,則 f(x1
=
=
f(x2).(請?zhí)顚憽埃荆?,<”號);若函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間 (0,2)上遞減,則f(x)在區(qū)間
(2,+∞)
(2,+∞)
  上遞增;
(2)當x=
2
2
時,f(x)=x+
4
x
(x>0)的最小值為
4
4
;
(3)根據(jù)函數(shù)f(x)的有關(guān)性質(zhì),你能得到函數(shù)f(x)=x+
4
x
(x<0)的最大值嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

探究函數(shù)f(x)=x+
4
x
  x∈(0,+∞)的最小值,并確定相應的x的值,列表如下,請觀察表中y值隨x值變化的特點,完成下列問題:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若當x>0時,函數(shù)f(x)=x+
4
x
時,在區(qū)間(0,2)上遞減,則在
 
上遞增;
(2)當x=
 
時,f(x)=x+
4
x
,x>0的最小值為
 
;
(3)試用定義證明f(x)=x+
4
x
,x>0在區(qū)間上(0,2)遞減;
(4)函數(shù)f(x)=x+
4
x
,x<0有最值嗎?是最大值還是最小值?此時x為何值?
解題說明:(1)(2)兩題的結(jié)果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應的x的值,列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
 y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請觀察表中y值隨x值變化的特點,完成下列問題:
(1)若x1x2=4,則f(x1
=
=
f(x2)(請?zhí)顚憽埃荆?,<”號);若函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在區(qū)間
(2,+∞)
(2,+∞)
上遞增;
(2)當x=
2
2
時,f(x)=x+
4
x
,(x>0)的最小值為
4
4
;
(3)試用定義證明f(x)=x+
4
x
,在區(qū)間(0,2)上單調(diào)遞減.

查看答案和解析>>

同步練習冊答案