已知函數(shù)f1(x)=mx2的圖象過點(diǎn)(1,1),函數(shù)y=f2(x)的圖象關(guān)于直線x=a對稱,且x≥a時f2(x)=x-a,若f(x)=f1(x)f2(x).
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)y=f(x)在區(qū)間[2,3]上的最小值.
分析:(1)由函數(shù)f
1(x)=mx
2的圖象過點(diǎn)(1,1),求得m解得f
1(x);由函數(shù)y=f
2(x)的圖象關(guān)于直線x=a對稱,且x≥a時f
2(x)=x-a,得到函數(shù)f
2(x)最后由f(x)=f
1(x)f
2(x)得到f(x).
(2)當(dāng)a≤2時,f(x)=x
2(x-a),f′(x)=3x
2-2ax,當(dāng)x∈[2,3]時f(x)是增函數(shù)f(x)
min=f(2),當(dāng)2<a≤3時f(x)
min=f(a)=0,當(dāng)a>3時f(x)=ax
2-x
3,f′(x)=2ax-3x
2,當(dāng)3<a<
時f(x)在[2,
a]增,在[
a,3]減,可得到
f(x)
min=f(2)=4a-8或f(x)
min=f(3)=9a-27,若4a-8>9a-27,即a<
時有兩種情況3<a
<時f(x)
min=f(3),
<a<時f(x)
min=f(2),當(dāng)a
≥時f(x)
min=f(2).最后寫成分段函數(shù)的形式.
解答:解:(1)∵函數(shù)f
1(x)=mx
2的圖象過點(diǎn)(1,1),
∴f
1(1)=1,
∴m=1),
∴f
1(x)=x
2∵函數(shù)y=f
2(x)的圖象關(guān)于直線x=a對稱,且x≥a時f
2(x)=x-a,
∴f
2(x)=|x-a|,
∵f(x)=f
1(x)f
2(x).
∴f(x)=x
2|x-a|,
(2)當(dāng)a≤2時,f(x)=x
2(x-a),
∴f′(x)=3x
2-2ax
當(dāng)x∈[2,3]時f′(x)>0,
∴f(x)是增函數(shù)
∴f(x)
min=f(2)=8-4a
當(dāng)2<a≤3時f(x)=x
2|x-a|,f(a)=0
∴f(x)
min=f(a)=0
當(dāng)a>3時f(x)=ax
2-x
3f′(x)=2ax-3x
2當(dāng)3<a<
時f(x)在[2,
a]增,在[
a,3]減
∴f(x)
min=f(2)=4a-8或f(x)
min=f(3)=9a-27
當(dāng)4a-8>9a-27即a<
當(dāng)3<a
<時f(x)
min=f(3)=9a-27
當(dāng)
<a<時f(x)
min=f(2)=4a-8
當(dāng)a
≥時f(x)
min=f(2)=4a-8
∴f(x)min=
| 8-4a a≤2 | 0 2<a≤3 | a-27 3<a< | 4a-8 a≥ |
| |
點(diǎn)評:本題主要考查函數(shù)解析式的求法及應(yīng)用,主要考查了函數(shù)的單調(diào)性來函數(shù)的最值,還考查了分類討論思想.