(1)當n=1時,≤1+1,不等式成立.
(2)假設n=k(k∈N*)時,不等式成立,即≤k+1,則n=k+1時,.
∴當n=k+1時,不等式成立.
上述證法( )
A.過程全部正確
B.n=1時的驗證不正確
C.歸納假設不正確
D.沒有用到從n=k到n=k+1的推理
科目:高中數(shù)學 來源: 題型:
(1)當n=1時,≤1+1,不等式成立.
(2)假設n=k時,不等式成立,即k2+k≤k+1時,
.
∴當n=k+1時不等式成立.
上述證法( )
A.過程全正確
B.n=1驗證不正確
C.歸納假設不正確
D.從n=k到n=k+1推理不正確
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)當n=1時,≤1+1,不等式成立.
(2)假設n=k(k∈N+)時,不等式成立,即<k+1,則n=k+1時,
=(k+1)+1.
所以當n=k+1時,不等式成立.
上述證法( )
A.過程全部正確
B.n=1驗得不正確
C.歸納假設不正確
D.從n=k到n=k+1的推理不正確
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)當n=1時,≤1+1,不等式成立.
(2)假設n=k(k∈N*)時,不等式成立,即≤k+1.則n=k+1時,=(k+1)+1.
∴當n=k+1時,不等式成立.上述證法( )
A.過程全部正確 B.n=1驗證不正確
C.歸納假設不正確 D.從n=k到n=k+1的推理不正確
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)當n=1時,≤1+1,不等式成立.
(2)假設n=k(k∈N*)時,不等式成立,即≤k+1,則n=k+1時,.
∴當n=k+1時,不等式成立.
上述證法( )
A.過程全部正確
B.n=1時的驗證不正確
C.歸納假設不正確
D.沒有用到從n=k到n=k+1的推理
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com