已知函數(shù)f(x)=cos(2x+φ),其中φ為實數(shù),且|φ|<π,若f(x)≤|f(
π
3
)|,對x∈R恒成立,又f(
π
2
)<f(
2
3
π
);
(1)求f(x)的解析式;
(2)用五點作圖法畫出函數(shù)f(x)一個周期內(nèi)的簡圖,并寫出f(x)的單調(diào)遞減區(qū)間;
(3)將函數(shù)y=f(x)的圖象向右平移
π
4
個單位得到函數(shù)g(x)圖象,求當時x∈[-
π
12
,
5
12
π]
時,g(x)的值域.
考點:余弦函數(shù)的圖象,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由題意可得 2×
π
3
+φ=kπ,k∈z,求得 φ 的值,可得f(x)的解析式.
(2)用五點法作函數(shù)y=Acos(ωx+φ)在一個周期上的簡圖.
(3)根據(jù),函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律以及余弦函數(shù)的定義域和值域,求得當x∈[-
π
12
,
5
12
π]
時,g(x)的值域.
解答: 解:(1)∵函數(shù)f(x)=cos(2x+φ),|φ|<π,f(x)≤|f(
π
3
)|,對x∈R恒成立,
∴2×
π
3
+φ=kπ,k∈z,∴φ=
π
3
,∴f(x)=cos(2x+
π
3
).
(2)列表:
 2x+
π
3
 0 
π
2
 π 
2
 2π
 x-
π
6
 
π
12
 
π
3
 
12
 
6
 f(x) 1 0-1 0 1
作圖:
顯然,函數(shù)f(x)的減區(qū)間為[-
π
6
,
π
3
].
(3)將函數(shù)y=f(x)=cos(2x+
π
3
)的圖象向右平移
π
4
個單位得到函數(shù)g(x)=cos[2(x-
π
4
)+
π
3
]=cos(2x-
π
6
)的圖象,
當時x∈[-
π
12
,
5
12
π]
時,2x-
π
6
∈[-
π
3
,
3
],g(x)∈[-
1
2
,1].
點評:本題主要考查余弦函數(shù)的最值,用五點法作函數(shù)y=Acos(ωx+φ)在一個周期上的簡圖,函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知圓C1:(x-3)2+(y-4)2=1,圓C2:(x+1)2+y2=1;
(1)求過點A(4,6)的圓C1的切線l的方程;
(2)已知圓C3:(x+1)2+y2=9,動圓M半徑為1,圓心M在圓心C3上移動,過圓M上任作圓C2的兩條切線PE,PF,切點為E,F(xiàn),求
C1E
C1F
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,已知曲線C1
x=cosφ
y=sinφ
(φ為參數(shù)),經(jīng)過坐標變換
x′=2x
y′=
3
y
得到曲線C2.A,B是曲線C2上兩點,且OA⊥OB.
(1)求曲線C1,C2的普通方程;
(2)求點O到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,長方體ABCD-A1B1C1D1的側(cè)面BCC1B1是正方形,E是AB的中點,AB=
2
BC.
(1)求證:BD1⊥平面B1CE;
(2)求二面角C-B1E-A1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程a2x+1=x2+x有一實數(shù)解x0,且x∈(
1
4
1
2
),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10名學(xué)生站成一排,要給每名學(xué)生發(fā)一頂紅色、黃色、藍色的帽子,要求每種顏色的帽子都要有,且相鄰的兩名學(xué)生帽子的顏色不同,則滿足要求的發(fā)帽子的方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且4a-b≥0,若函數(shù)f(x)=
1
3
ax3+x2+bx無極值,則
b-2
a+1
的取值范圍為( 。
A、[2
3
-4,4]
B、[2
3
-4,+∞]
C、[-2
3
-4,4]
D、[-2
3
-4,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有編號為1、2、3號的3個信箱和編號為A、B、C、D的4封信.
(1)若從4封信中任選3封分別投入3個信箱,其中A恰好投入1號信箱的概率是多少?
(2)若4封信可以任意投入信箱,投完為止,其中A恰好投入1號或2號信箱的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(x+1)(x2+ax+b)(a,b∈R)的圖象關(guān)于點(2,0)對稱,則a=
 

查看答案和解析>>

同步練習(xí)冊答案