對于函數(shù)f(x),若存在x0使得f(x0)=x0成立,則稱點(diǎn)(x0,x0)為函數(shù)f(x)的不動點(diǎn).
(1)已知函數(shù)f(x)=ax2+bx-b(a≠0)有不動點(diǎn)(1,1)和(-3,-3),求a,b的值.
(2)若對于任意實(shí)數(shù)b,函數(shù)f(x)=ax2+bx-b總有兩個相異的不動點(diǎn),求a的范圍.
分析:(1)根據(jù)不動點(diǎn)的定義,及已知中函數(shù)f(x)=ax2+bx-b(a≠0)有不動點(diǎn)(1,1)和(-3,-3),我們易構(gòu)造一個關(guān)于a,b的二元一次方程組,解方程組即可得到答案.
(2)若函數(shù)f(x)=ax2+bx-b總有兩個相異的不動點(diǎn),則方程ax2+bx-b=x有兩個相異的實(shí)根,由此可以構(gòu)造出一個不等式,結(jié)合函數(shù)的性質(zhì),解不等式即可得到a的范圍.
解答:解:(1)由題意
f(1)=1
f(-3)=-3
,即
a+b-b=1
a(-3)2+b(-3)-b=-3
,解的
a=1
b=3

(2)函數(shù)f(x)=ax2+bx-b總有兩個相異的不動點(diǎn),
即關(guān)于x的方程f(x)=x有兩個不等根.
化簡f(x)=x得到ax2+(b-1)x-b=0.
所以(b-1)2+4ab>0,即b2+(4a-2)b+1>0.
由題意,該關(guān)于b的不等式恒成立,
所以(4a-2)2-4<0.解之得:0<a<1.
點(diǎn)評:本題考查的知識點(diǎn)是二次函數(shù)的性質(zhì),其中根據(jù)二次函數(shù)、二次方程、二次不等式之間的關(guān)系,將函數(shù)問題轉(zhuǎn)化為不等式或方程問題是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在區(qū)間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列4個函數(shù):
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“穩(wěn)定區(qū)間”的函數(shù)有
 
(填出所有滿足條件的函數(shù)序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實(shí)數(shù)a,b(a<b),使當(dāng)x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“科比函數(shù)”.若函數(shù)f(x)=k+
x+2
是“科比函數(shù)”,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).如果函數(shù)
f(x)=ax2+bx+1(a>0)有兩個相異的不動點(diǎn)x1,x2
(1)若x1<1<x2,且f(x)的圖象關(guān)于直線x=m對稱,求證:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點(diǎn)”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點(diǎn).若函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點(diǎn)0和2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)區(qū)間,
(2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數(shù)列{an}的前n項和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設(shè)bn=-
1
an
,Tn表示數(shù)列{bn}的前n項和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

同步練習(xí)冊答案