12.如圖,在三棱臺ABC-A1B1C1中,截去三棱錐A1-ABC,則剩余部分是( 。
A.三棱錐B.四棱錐C.三棱柱D.五棱錐

分析 畫出圖形,根據(jù)圖形和四棱錐的結(jié)構(gòu)特征,即可得出剩余幾何體是什么圖形.

解答 解:如圖所示,
三棱臺A′B′C′-ABC中,沿A′BC截去三棱錐A′-ABC,
剩余部分是四棱錐A′-BCC′B′.
故選:B.

點評 本題考查了空間幾何體結(jié)構(gòu)特征的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{c+b-a}{c+b}$
(1)求角C.
(2)求函數(shù)f(A)=$\frac{-2cos2A}{1+tanA}$+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x•f′(x)<0的解集為( 。
A.(-∞,-1)∪(0,1)B.(-2,-1)∪(1,2)C.(-1,0)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在底面為正三角形的三棱柱ABC-A1B1C1中,AB=2,AA1⊥平面ABC,E,F(xiàn)分別為BB1,AC的中點.
(1)求證:BF∥平面A1EC;
(2)若AA1=2$\sqrt{2}$,求二面角C-EA1-A的大。
(2)若AA1=2$\sqrt{2}$,求三棱錐C1-A1EC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在150米高的山頂上,測得山下一塔的塔頂與塔底的俯角分別為30°,60°x=0,則塔高為( 。
A.50米B.75米C.100米D.125米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}的首項為$\frac{1}{2}$,Sn為數(shù)列的前n項和,若S6=2S4,則a10=( 。
A.$\frac{1}{3}$B.$\frac{19}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD,E是邊SB的中點.
(1)求證:CE∥平面SAD;
(2)求二面角D-EC-B的余弦值大;
(3)求三棱錐S-ECD與四棱錐E-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等比數(shù)列{an}共有10項,其中奇數(shù)項之積為2,偶數(shù)項之積為64,則其公比是( 。
A.$\frac{3}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列幾何體的截面圖不可能是四邊形的是(  )
A.圓柱B.圓錐C.圓臺D.棱臺

查看答案和解析>>

同步練習(xí)冊答案