8.每個(gè)航班都有一個(gè)最早降落時(shí)間和最晚降落時(shí)間,在這個(gè)時(shí)間窗口內(nèi),飛機(jī)均有可能降落.甲航班降落的時(shí)間窗口為上午10點(diǎn)到11點(diǎn),如果它準(zhǔn)點(diǎn)降落時(shí)間為上午10點(diǎn)40分,那么甲航班晚點(diǎn)的概率是$\frac{1}{3}$;若甲乙兩個(gè)航班在上午10點(diǎn)到11點(diǎn)之間共用一條跑道降落,如果兩架飛機(jī)降落時(shí)間間隔不超過15分鐘,則需要人工調(diào)度,在不考慮其他飛機(jī)起降的影響下,這兩架飛機(jī)需要人工調(diào)度的概率是$\frac{7}{16}$.

分析 利用幾何概型,求出甲航班降落的時(shí)間窗口為上午10點(diǎn)到11點(diǎn),如果它準(zhǔn)點(diǎn)降落時(shí)間為上午10點(diǎn)40分,甲航班晚點(diǎn)的概率;試驗(yàn)包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},做出事件對(duì)應(yīng)的集合表示的面積,寫出滿足條件的事件是A={(x,y)|0≤x≤1,0≤y≤1,|x-y|≤$\frac{1}{4}$},算出事件對(duì)應(yīng)的集合表示的面積,根據(jù)幾何概型概率公式得到結(jié)果.

解答 解:甲航班降落的時(shí)間窗口為上午10點(diǎn)到11點(diǎn),如果它準(zhǔn)點(diǎn)降落時(shí)間為上午10點(diǎn)40分,那么甲航班晚點(diǎn)的概率是$\frac{20}{60}$=$\frac{1}{3}$;
設(shè)甲乙兩個(gè)航班到達(dá)的時(shí)間分別為(10+x)時(shí)、(10+y)時(shí),
則0≤x≤1,0≤y≤1
若兩架飛機(jī)降落時(shí)間間隔不超過15分鐘,則|x-y|≤$\frac{1}{4}$
正方形的面積為1,落在兩直線之間部分的面積為1-($\frac{3}{4}$)2=$\frac{7}{16}$,如圖:
∴這兩架飛機(jī)需要人工調(diào)度的概率是$\frac{7}{16}$.
故答案為$\frac{1}{3}$;$\frac{7}{16}$.

點(diǎn)評(píng) 本題是一個(gè)幾何概型,對(duì)于這樣的問題,一般要通過把試驗(yàn)發(fā)生包含的事件同集合結(jié)合起來,根據(jù)集合對(duì)應(yīng)的圖形做出面積,用面積的比值得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}前n項(xiàng)和為Sn,公差d=-2,S3=21,則a1的值為(  )
A.10B.9C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在三棱錐P-ABC中,D為底面ABC的邊AB上一點(diǎn),M為底面ABC內(nèi)一點(diǎn),且滿足$\overrightarrow{AD}=\frac{3}{4}\overrightarrow{AB}$,$\overrightarrow{AM}=\overrightarrow{AD}+\frac{3}{5}\overrightarrow{BC}$,則三棱錐P-AMD與三棱錐P-ABC的體積比 $\frac{{{V_{P-AMD}}}}{{{V_{P-ABC}}}}$為( 。
A.$\frac{9}{25}$B.$\frac{4}{5}$C.$\frac{9}{16}$D.$\frac{9}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知正方體ABCD-A1B1C1D1,E,F(xiàn),G,H分別是AD1、CD1、BC、AB的中點(diǎn).
(Ⅰ)求證:E,F(xiàn),G,H四點(diǎn)共面;
(Ⅱ)求證:GH⊥B1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=sin(ωx+φ),x∈R(其中ω>0,-π<φ<π)的部分圖象,如圖所示.那么f(x)的解析式為( 。
A.$f(x)=sin(x+\frac{π}{2})$B.$f(x)=sin(x-\frac{π}{2})$C.$f(x)=sin(2x+\frac{π}{2})$D.$f(x)=sin(2x-\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,輸出的k值為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是一個(gè)組合體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積(接觸面積忽略不計(jì))是( 。
A.32πB.36πC.40πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.方程:22x+1-2x-3=0的解為$lo{g}_{2}\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.計(jì)算($\frac{125}{27}$)${\;}^{-\frac{1}{3}}$+lg$\frac{1}{4}$-lg25=-$\frac{7}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案