11.已知等比數(shù)列{an}的前n項和為Sn,若Sn+1=2n,則a12+a32+a52+…+a2n-12等于(  )
A.$\frac{{4}^{n}-1}{3}$B.$\frac{1-{4}^{n}}{3}$C.$\frac{1{6}^{n}-1}{15}$D.$\frac{1-1{6}^{n}}{15}$

分析 由等比數(shù)列的前n項和Sn+1=2n,則a1=S1=1,a2=S2-S1=2,則q=$\frac{{a}_{2}}{{a}_{1}}$=2,數(shù)列{an}是以1為首項,2為公比的等比數(shù)列,因此an2=4n-1,數(shù)列{an2}是以1為首項,4為公比的等比數(shù)列,根據(jù)等比數(shù)列的前n項和的公式求得

解答 解:等比數(shù)列{an}的公比為q,
當(dāng)n=1時,a1=S1=1,
a2=S2-S1=(22-1)-1=2,
q=$\frac{{a}_{2}}{{a}_{1}}$=2,
∴等比數(shù)列的首項為1,公比q為2,
則an=2n-1,
則an2=4n-1,是首項為1,公比為4的等比數(shù)列,
所以,則a12+a22+…an2=$\frac{1-{4}^{n}}{1-4}$=$\frac{{4}^{n}-1}{3}$,
故選A.

點評 本題考查等比數(shù)列的性質(zhì)及前n項和公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若樣本x1+1,x2+1,xn+1的平均數(shù)為9,方差為3,則樣本2x1+3,2x2+3,…,2xn+3,的平均數(shù)、方差是( 。
A.23,12B.19,12C.23,18D.19,18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若函數(shù)f(x)=ex+x2-mx,在點(1,f(1))處的斜率為e+1.
(1)求實數(shù)m的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知兩條拋物線的頂點在原點,焦點分別是F1(2,0)和F2(0,-2),求它們的交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),則不等式4f(x+1)>7的解集為( 。
A.(2,+∞)B.(-∞,-1)∪(3,+∞)C.(-4,2)D.(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.判斷并證明函數(shù)$y=x+\frac{4}{x}$在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三棱柱ABC-A1B1C1中,P、Q分別為側(cè)棱AA1,BB1上的點,且A1P=BQ,則四棱錐C1-APQB與三棱柱ABC-A1B1C1的體積之比是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點,頂點B(0,b),且△BF1F2是邊長為2的等邊三角形
(1)求橢圓的方程;
(2)過右焦點F2的且斜率為k的直線l與橢圓交于A、C兩點,如AF2=2CF2,求k的值;
(3)若點M為橢圓右準(zhǔn)線上一點(異于右準(zhǔn)線與x軸的交點),右頂點為D,設(shè)線段F1M交橢圓于P,PD斜率為k1,MD的斜率為k2,求k1k2的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.3位好友不約而同乘一列火車去旅游,該列火車有10節(jié)車廂,那么至少有2人在同一節(jié)車廂相遇的概率為( 。
A.$\frac{29}{200}$B.$\frac{7}{25}$C.$\frac{29}{144}$D.$\frac{7}{18}$

查看答案和解析>>

同步練習(xí)冊答案