【題目】函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).
(1)求m;
(2)當(dāng)a>1時,若函數(shù)f(x)的圖像與直線l:y=﹣mx+n無公共點,求n的取值范圍.

【答案】
(1)解:∵函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).

∴f(﹣x)=f(x),

即loga(ax+1)﹣mx=loga(ax+1)+mx,

即loga )=﹣x=2mx,

解得:m=﹣


(2)解:令loga(ax+1)+mx=﹣mx+n,

即n=loga(ax+1)+2mx=loga(ax+1)﹣x,

n′= ﹣1= <0恒成立,

即n=loga(ax+1)﹣x為減函數(shù),

→+∞,

→0,

故n∈(0,+∞)

若函數(shù)f(x)的圖像與直線l:y=﹣mx+n無公共點,則n∈(﹣∞,0]


【解析】(1)若函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).則f(﹣x)=f(x),進(jìn)而可得m的值;(2)令loga(ax+1)+mx=﹣mx+n,即n=loga(ax+1)+2mx=loga(ax+1)﹣x,求出函數(shù)的值域,可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.

(1)求證:平面CFM⊥平面BDF;
(2)若點N為線段CE的中點,EC=2,F(xiàn)D=3,求證:MN∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px過點P1,1.過點(0,)作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP、ON交于點AB,其中O為原點.

)求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;

)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“一帶一路”的建設(shè)中,中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探.由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料下表:

井號I

1

2

3

4

5

6

坐標(biāo)

鉆探深度

2

4

5

6

8

10

出油量

40

70

110

90

160

205

(1)在散點圖中號舊井位置大致分布在一條直線附近,借助前5組數(shù)據(jù)求得回歸線方程為,求,并估計的預(yù)報值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(1)中的值之差(即: )不超過10%,則使用位置最接近的已有舊井,否則在新位置打井,請判斷可否使用舊井?(參考公式和計算結(jié)果:

(3)設(shè)出油量與鉆探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,在原有井號的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(1,0), =(2,1).
(1)求 +3 的坐標(biāo);
(2)當(dāng)k為何實數(shù)時,k +3 平行,平行時它們是同向還是反向?

查看答案和解析>>

同步練習(xí)冊答案