(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分5分,第3小題滿分7分.

給定橢圓>0,稱圓心在原點,半徑為的圓是橢圓的“伴隨圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為

(1)求橢圓的方程及其“伴隨圓”方程;

(2)若傾斜角為的直線與橢圓C只有一個公共點,且與橢圓的伴隨圓相交于M、N兩點,求弦MN的長;

(3)點是橢圓的伴隨圓上的一個動點,過點作直線,使得與橢圓都只有一個公共點,求證:.

解:(1)因為,所以……………………………………………2分

所以橢圓的方程為

伴隨圓的方程為.………………………………………………………………4分

(2)設(shè)直線的方程,由 

……………………………………………………………6分

圓心到直線的距離為 

所以……………………………………………………………………8分

(3)①當(dāng)中有一條無斜率時,不妨設(shè)無斜率,

因為與橢圓只有一個公共點,則其方程為

當(dāng)方程為時,此時與伴隨圓交于點

此時經(jīng)過點(或且與橢圓只有一個公共點的直線是(或,即(或,顯然直線垂直;

同理可證方程為時,直線垂直.…………………………………………………10分

②當(dāng)都有斜率時,設(shè)點其中,

設(shè)經(jīng)過點與橢圓只有一個公共點的直線為

,消去得到,

,………………………………………12分

經(jīng)過化簡得到:,

因為,所以有,………………………………14分

設(shè)的斜率分別為,因為與橢圓都只有一個公共點,

所以滿足方程

因而,即垂直.………………………………………………………………16分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆陜西省師大附中、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

.三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年陜西省、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.

16. (本題滿分12分)

已知函數(shù)為偶函數(shù), 且

(1)求的值;

(2)若為三角形的一個內(nèi)角,求滿足的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設(shè)是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設(shè)是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d;

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案