(本題滿分12分)設橢圓C1:的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2:與軸的交點為B,且經(jīng)過F1,F(xiàn)2點.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設M(0,),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求面積的最大值.
(Ⅰ)(Ⅱ)
【解析】
試題分析:(Ⅰ)解:由題意可知B(0,-1),則A(0,-2),故b=2.
令y=0得即,則F1(-1,0),F(xiàn)2(1,0),故c=1.
所以.于是橢圓C1的方程為.…………4分
(Ⅱ)設N(),由于知直線PQ的方程為:
. 即.……………………………5分
代入橢圓方程整理得:,
=,
, ,
故
.………………………………7分
設點M到直線PQ的距離為d,則.…………………9分
所以,的面積S
………………11分
當時取到“=”,經(jīng)檢驗此時,滿足題意.
綜上可知,的面積的最大值為.…………………………12分
考點:橢圓標準方程及直線和橢圓的位置關系求最值
點評:本題計算量較大,要求學生有較強的數(shù)據(jù)處理能力
科目:高中數(shù)學 來源:2014屆吉林省吉林市高二上學期期中理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設命題:實數(shù)滿足, 命題:實數(shù)滿足.
當為真,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年河北省石家莊市高三暑期第二次考試理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)設函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖北省高三十一月份階段性考試理科數(shù)學 題型:解答題
(本題滿分12分)設函數(shù),其中。
(Ⅰ)當時,求不等式的解集;
(Ⅱ)若不等式的解集為 ,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年云南省高二上學期期末數(shù)學理卷 題型:解答題
(本題滿分12分)
設,分別是橢圓:的左、右焦點,過斜率為1的直線與相交于、兩點,且,,成等差數(shù)列,
(Ⅰ)求的離心率;
(Ⅱ)設點滿足,求的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com