已知函數(shù)
(1)判斷的奇偶性;
(2)確定函數(shù)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.
(1)為偶函數(shù)(2)增函數(shù)

試題分析:解:(1)因為函數(shù)為所以定義域為R  

為偶函數(shù). 
(2)在區(qū)間上任取

,

上為增函數(shù)。
點評:若函數(shù)滿足,則函數(shù)為奇函數(shù);若函數(shù)滿足,則函數(shù)為偶函數(shù)。另外,看一個函數(shù)在一個區(qū)間內(nèi)是增函數(shù)還是減函數(shù),只要看這個函數(shù)在這個區(qū)間內(nèi)y隨x的變化而怎樣變化,若y隨x的增大而增大,則函數(shù)是增函數(shù);若y隨x的增大而增小,則函數(shù)是減函數(shù)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于定義域為的函數(shù),若存在區(qū)間,使得則稱區(qū)間M為函數(shù)的“等值區(qū)間”.給出下列三個函數(shù):
;  ②;   ③
則存在“等值區(qū)間”的函數(shù)的個數(shù)是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱 為“一階比增函數(shù)”.
(Ⅰ) 若是“一階比增函數(shù)”,求實數(shù)的取值范圍;
(Ⅱ) 若是“一階比增函數(shù)”,求證:,;
(Ⅲ)若是“一階比增函數(shù)”,且有零點,求證:有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函 數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當(dāng)時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于函數(shù),如果存在銳角使得的圖象繞坐標(biāo)原點逆時針旋轉(zhuǎn)角,所得曲線仍是一函數(shù),則稱函數(shù)具備角的旋轉(zhuǎn)性,下列函數(shù)具有角的旋轉(zhuǎn)性的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖所示,對應(yīng)關(guān)系是從A到B的映射的是(  )
     
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組函數(shù)是同一函數(shù)的是  
;②;③;④。
A.①②B.①③C.②③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x2+2x-1 的值域為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(a)=(3m-1)a+b-2m,當(dāng)m∈[0,1]時f(a)≤1恒成立,則a+b的最大值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案