【題目】某校高一(1)班全體男生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題:

(1)求該班全體男生的人數(shù);

(2)求分數(shù)在之間的男生人數(shù),并計算頻率公布直方圖中之間的矩形的高;

(3)根據(jù)頻率分布直方圖,估計該班全體男生的數(shù)學平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).

【答案】(1)(2)4, (3)

【解析】試題分析:

(1)由題意結合頻率可得該班全體男生的人數(shù)為25人;

(2)結合莖葉圖可得之間的男生人數(shù)為(人),矩形的高為.

(3)結合頻率分布直方圖可得該班全體男生的數(shù)學平均成績約為.

試題解析:

解:(1)由莖葉圖知,分數(shù)在之間的頻數(shù)為2,

由頻率分布直方圖知,分數(shù)在之間的頻率為

所以該班全體男生人數(shù)為(人)

(2)由莖葉圖可見部分共有21人,所以之間的男生人數(shù)為(人),

所以,分數(shù)在之間的頻率為,

頻率分布直方圖中間的矩形的高為.

(3)由頻率分布直方圖可知,所求該班全體男生的數(shù)學平均成績約為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為函數(shù)兩個不同零點.

(1)若,且對任意,都有,求

(2)若,則關于的方程是否存在負實根?若存在,求出該負根的取值范圍,若不存在,請說明理由

(3)若,且當,的最大值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司一下屬企業(yè)從事某種高科技產品的生產.該企業(yè)第一年年初有資金2000萬元,將其投入生產,到當年年底資金增長了50%.預計以后每年年增長率與第一年的相同.公司要求企業(yè)從第一年開始,每年年底上繳資金d萬元,并將剩余資金全部投入下一年生產.設第n年年底企業(yè)上繳資金后的剩余資金為an萬元.
(Ⅰ)用d表示a1 , a2 , 并寫出an+1與an的關系式;
(Ⅱ)若公司希望經過m(m≥3)年使企業(yè)的剩余資金為4000萬元,試確定企業(yè)每年上繳資金d的值(用m表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,已知,(n∈N*)

(1)求數(shù)列的通項公式

(2)(λ為非零常數(shù)),問是否存在整數(shù)λ使得對任意n∈N*都有?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的長軸的一個端點是拋物線的焦點,離心率是

1)求橢圓E的方程;

2)過點,斜率為k的動直線與橢圓E相交于AB兩點,請問x軸上是否存在點M,使為常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),直線的圖象的相鄰兩個交點的橫坐標分別是,現(xiàn)有如下命題:

該函數(shù)在上的值域是;

上,當且僅當時函數(shù)取最大值;

該函數(shù)的最小正周期可以是;

的圖象可能過原點.

其中的真命題有__________(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q為真,求x的取值范圍;
(2)若¬q是¬p的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)y=﹣sin2x+ 的圖象,只需將y=sinxcosx的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項為正數(shù)的數(shù)列{an}的前n項和為Sn , 且滿足
(Ⅰ)求證:{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設 ,求證:

查看答案和解析>>

同步練習冊答案