精英家教網 > 高中數學 > 題目詳情
對于函數f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數f(x)的一個“穩(wěn)定區(qū)間”現有四個函數:
①f(x)=ex②f(x)=x3④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數有( )
A.①②
B.②③
C.③④
D.②④
【答案】分析:根據“穩(wěn)定區(qū)間”的定義,我們要想說明函數存在“穩(wěn)定區(qū)間”,我們只要舉出一個符合定義的區(qū)間M即可,但要說明函數沒有“穩(wěn)定區(qū)間”,我們可以用反證明法來說明.由此對四個函數逐一進行判斷,即可得到答案.
解答:解:①對于函數f(x)=ex 若存在“穩(wěn)定區(qū)間”[a,b],由于函數是定義域內的增函數,故有ea=a,eb=b,
即方程ex=x有兩個解,即y=ex和y=x的圖象有兩個交點,這與即y=ex和y=x的圖象沒有公共點相矛盾,故①不存在“穩(wěn)定區(qū)間”.
②對于f(x)=x3 存在“穩(wěn)定區(qū)間”,如 x∈[0,1]時,f(x)=x3 ∈[0,1].
③對于,存在“穩(wěn)定區(qū)間”,如 x∈[0,1]時,∈[0,1].
④對于 f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數是定義域內的增函數,故有l(wèi)na=a,且lnb=b,即方程lnx=x 有兩個解,
即y=lnx 和 y=x的圖象有兩個交點,這與y=lnx 和 y=x的圖象沒有公共點相矛盾,故④不存在“穩(wěn)定區(qū)間”.
故選 B.
點評:本題考查的知識點是函數的概念及其構造要求,在說明一個函數沒有“穩(wěn)定區(qū)間”時,利用函數的性質、圖象結合反證法證明是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x),若存在區(qū)間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數f(x)的一個“穩(wěn)定區(qū)間”.給出下列4個函數:
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“穩(wěn)定區(qū)間”的函數有
 
(填出所有滿足條件的函數序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若在其定義域內存在兩個實數a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數f(x)為“科比函數”.若函數f(x)=k+
x+2
是“科比函數”,則實數k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數
f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
(1)若x1<1<x2,且f(x)的圖象關于直線x=m對稱,求證:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設函數f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設函數f(x)=3x+4,求集合A和B,并分析能否根據(1)(2)中的結論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數f(x)的不動點.若函數f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數f(x)的單調區(qū)間,
(2)已知各項不為0的數列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數列{an}的前n項和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設bn=-
1
an
,Tn表示數列{bn}的前n項和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

同步練習冊答案