設(shè)F1、F2是橢圓數(shù)學(xué)公式的兩個焦點,點P在橢圓上,且滿足數(shù)學(xué)公式,則△F1PF2的面積等于________.

1
分析:利用橢圓的定義可得|PF1|+|PF2|=4,又|F1F2|=2 ,∠F1PF2=,利用余弦定理可求得|PF1|•|PF2|,從而可求得△F1PF2的面積.
解答:∵P是橢圓 上的一點,F(xiàn)1、F2是橢圓的兩個焦點,∠F1PF2=
∴|PF1|+|PF2|=4,|F1F2|=2
在△F1PF2中,由勾股定理得:
|F1F2|2=|PF1|2+|PF2|2=(|PF1|+|PF2|)2-2|PF1|•|PF2|
=16-2|PF1|•|PF2|=16-2|PF1|•|PF2|=12,
∴|PF1|•|PF2|=2,
∴S△F1PF2=|PF1|•|PF2|=1
故答案為:1
點評:本題考查橢圓的簡單性質(zhì)與標(biāo)準(zhǔn)方程,考查勾股定理與三角形的面積,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓的兩個焦點,F(xiàn)1F2=8,P是橢圓上的點,PF1+PF2=10,且PF1⊥PF2,則點P的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓的兩個焦點,P是橢圓上一點,且P到兩個焦點的距離之差為2,則△PF1F2是( 。

A.鈍角三角形                                   B.銳角三角形

C.斜三角形                                D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進(jìn)行研究并完成下面問題。

   (1)設(shè)F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1·d2的值,并判斷直線L與橢圓M的位置關(guān)系。

   (2)設(shè)F1、F2是橢圓的兩個焦點,點F1、F2到直線        mn不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1·d2的值。

   (3)試寫出一個能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。

   (4)將(3)中得出的結(jié)論類比到其它曲線,請同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓的兩個焦點,以F1為圓心,且過橢圓中心的圓與橢圓的一個交點為M,若直線F2M與圓F1相切,則該橢圓的離心率是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省第13次月考) 題型:選擇題

設(shè)F1,F(xiàn)2是橢圓的兩個焦點,P是橢圓上的點,且

 

的面積為(   )

A.4                           B.6                          C.                     D.

 

查看答案和解析>>

同步練習(xí)冊答案