【題目】設(shè)函數(shù)g(x)=sinωx(ω0)向左平移個(gè)單位長度得到函數(shù)f(x),已知f(x)[02π]上有且只有5個(gè)零點(diǎn),則下列結(jié)論正確的是(

A.f(x)的圖象關(guān)于直線對(duì)稱

B.f(x)(02π)上有且只有3個(gè)極大值點(diǎn),f(x)(0,2π)上有且只有2個(gè)極小值點(diǎn)

C.f(x)上單調(diào)遞增

D.ω的取值范圍是[)

【答案】CD

【解析】

利用正弦函數(shù)的對(duì)稱軸可知,不正確;由圖可知上還可能有3個(gè)極小值點(diǎn),不正確;由解得的結(jié)果可知,正確;根據(jù)上遞增,且,可知正確.

依題意得 ,如圖:

對(duì)于,令,得,,所以的圖象關(guān)于直線對(duì)稱,故不正確;

對(duì)于,根據(jù)圖象可知,,3個(gè)極大值點(diǎn),2個(gè)或3個(gè)極小值點(diǎn),故不正確,

對(duì)于,因?yàn)?/span>,,所以,解得,所以正確;

對(duì)于,因?yàn)?/span>,由圖可知上遞增,因?yàn)?/span>,所以,所以上單調(diào)遞增,故正確;

故選:CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對(duì)垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動(dòng),科學(xué)地進(jìn)行垃圾分類,某小區(qū)隨機(jī)抽取年齡在區(qū)間上的50人進(jìn)行調(diào)研,統(tǒng)計(jì)出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如下表:

年齡

頻數(shù)

5

10

10

15

5

5

了解

4

5

8

12

2

1

1)填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為以65歲為分界點(diǎn)居民對(duì)了解垃圾分類的有關(guān)知識(shí)有差異;

年齡低于65歲的人數(shù)

年齡不低于65歲的人數(shù)

合計(jì)

了解

不了解

合計(jì)

2)若對(duì)年齡在,的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望

參考公式和數(shù)據(jù)

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元).這些數(shù)字的背后,除了是消費(fèi)者買買買的表現(xiàn),更是購物車?yán)镏袊孪M(fèi)的奇跡,為了研究歷年銷售額的變化趨勢(shì),一機(jī)構(gòu)統(tǒng)計(jì)了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)y(單位:十億元),繪制如表:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

編號(hào)x

1

2

3

4

5

6

7

8

9

10

銷售額y

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖,如圖所示

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為銷售額關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果及如表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2020年天貓雙十一銷售額;(注:數(shù)據(jù)保留小數(shù)點(diǎn)后一位)

3)把銷售超過100(十億元)的年份叫暢銷年,把銷售額超過200(十億元)的年份叫狂歡年,從2010年到2019年這十年的暢銷年中任取2個(gè),求至少取到一個(gè)狂歡年的概率.

參考數(shù)據(jù):

參考公式:

對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù),.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的圾坐標(biāo)方,且直線l與曲線C相交于A,B兩點(diǎn).

1)求曲線C的普通方程和l的直角坐標(biāo)方程;

2)若,點(diǎn)滿足,求此時(shí)r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,將其左、右焦點(diǎn)和短軸的兩個(gè)端點(diǎn)順次連接得到一個(gè)面積為的正方形.

1)求橢圓的方程;

2)直線與橢圓交于兩點(diǎn)(均不在軸上),點(diǎn),若直線、的斜率成等比數(shù)列,且的面積為為坐標(biāo)原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了提高生產(chǎn)效率,對(duì)生產(chǎn)設(shè)備進(jìn)行了技術(shù)改造,為了對(duì)比技術(shù)改造后的效果,采集了技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長度(單位:天)數(shù)據(jù),整理如下:

改造前:19,31,22,26,34,1522,25,40,35,1816,28,2334,15,26,2024,21

改造后:3229,41,18,26,33,42,34,3739,33,2242,3543,2741,3738,36

1)完成下面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?

超過30

不超過30

改造前

改造后

2)工廠的生產(chǎn)設(shè)備的運(yùn)行需要進(jìn)行維護(hù),工廠對(duì)生產(chǎn)設(shè)備的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi),保障維護(hù)費(fèi)兩種.對(duì)生產(chǎn)設(shè)備設(shè)定維護(hù)周期為T(即從開工運(yùn)行到第kT天,k∈N*)進(jìn)行維護(hù).生產(chǎn)設(shè)備在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)設(shè)備能連續(xù)運(yùn)行,則只產(chǎn)生一次正常維護(hù)費(fèi),而不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)設(shè)備不能連續(xù)運(yùn)行,則除產(chǎn)生一次正常維護(hù)費(fèi)外,還產(chǎn)生保障維護(hù)費(fèi).經(jīng)測算,正常維護(hù)費(fèi)為0.5萬元/次;保障維護(hù)費(fèi)第一次為0.2萬元/周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元.現(xiàn)制定生產(chǎn)設(shè)備一個(gè)生產(chǎn)周期(120天計(jì))內(nèi)的維護(hù)方案:T=30,k=1,2,34.以生產(chǎn)設(shè)備在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及均值.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時(shí)節(jié),雌性楊樹會(huì)以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)査了部分市民(問卷調(diào)査表如下表所示),并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計(jì)圖表(如下圖)

由兩個(gè)統(tǒng)計(jì)圖表可以求得,選擇D選項(xiàng)的人數(shù)和扇形統(tǒng)計(jì)圖中E的圓心角度數(shù)分別為(

A.500,28.8°B.250,28.6°C.500,28.6°D.25028.8°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C方程為,橢圓中心在原點(diǎn),焦點(diǎn)在x軸上.

1)證明圓C恒過一定點(diǎn)M,并求此定點(diǎn)M的坐標(biāo);

2)判斷直線與圓C的位置關(guān)系,并證明你的結(jié)論;

3)當(dāng)時(shí),圓C與橢圓的左準(zhǔn)線相切,且橢圓過(1)中的點(diǎn)M,求此時(shí)橢圓方程;在x軸上是否存在兩定點(diǎn)AB使得對(duì)橢圓上任意一點(diǎn)Q(異于長軸端點(diǎn)),直線,的斜率之積為定值?若存在,求出A,B坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在上任意一點(diǎn)處的切線,若過右焦點(diǎn)的直線交橢圓兩點(diǎn),已知在點(diǎn)處切線相交于.

(Ⅰ)求點(diǎn)的軌跡方程;

(Ⅱ)①若過點(diǎn)且與直線垂直的直線(斜率存在且不為零)交橢圓兩點(diǎn),證明為定值.

②四邊形的面積是否有最小值,若有請(qǐng)求出最小值;若沒有請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案