當(dāng)x、y滿足條件|x|+|y|<1時(shí),變量u=
y
x-3
的取值范圍是( 。
A、(-3,3)
B、(-
1
3
,
1
3
)
C、[-
1
3
,
1
3
]
D、(-
1
3
,0)∪(0,
1
3
)
分析:①分四種情況討論x,y正負(fù)去絕對值.情況之一:x>0,y>0時(shí)x+y<1畫區(qū)域.綜合四種情況取四個(gè)域區(qū)域交集②分析u的幾何意義:可行域內(nèi)點(diǎn)(x,y),與(3,0)兩點(diǎn)連線斜率③做過(3,0)點(diǎn)直線與可行域相交轉(zhuǎn)動(dòng)直線觀察可知斜率范圍.
解答:精英家教網(wǎng)解:設(shè)P(x,y),則滿足條件|x|+|y|<1的點(diǎn)P在直角坐標(biāo)平面上對應(yīng)的區(qū)域如圖所示,設(shè)Q(3,0),則u=
y
x-3
=KPQ
,由圖可知直線在上下兩頂點(diǎn)處取得最值,因?yàn)閰^(qū)域不包括邊界,
所以選B.
點(diǎn)評:本題考查線性規(guī)劃問題可行域畫法以及連點(diǎn)連線斜率問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x、y滿足條件
x≥0
y≤x
2x+y-9≤0
時(shí),目標(biāo)函數(shù)z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在兩個(gè)小題中任選一題作答,如果多做,則按所做的第一題評閱記分).
(A)在極坐標(biāo)系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程是
ρcosθ=3
ρcosθ=3

(B) 當(dāng)x,y滿足條件|x-1|+|y+1|<1時(shí),變量μ=
x-1
y-2
的取值范圍是
(-
1
3
,
1
3
(-
1
3
,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x,y滿足條件
x≥y,          
y≥0,           
2x+y-3≤0
時(shí),目標(biāo)函數(shù)z=x+3y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(注意:本小題為選做題,A,B兩題選做其中一題,若都做了,則按A題答案給分)
A.當(dāng)x,y滿足條件|x-1|+|y+1|<1時(shí),變量u=
x-1
y-2
的取值范圍是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R),它與曲線
x=1+2cosα
y=2+2sinα
(α為參數(shù))相交于A,B兩點(diǎn),則以線段AB為直徑的圓的面積為
2
2

查看答案和解析>>

同步練習(xí)冊答案