3.設(shè)集合A={x|4x-3>0},B={x|x-6<0},則A∪B=R.

分析 分別求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x|4x-3>0}={x|x>$\frac{3}{4}$},
B={x|x-6<0}={x|x<6},
∴A∪B={x|x$>\frac{3}{4}$}∪{x|x<6}=R.
故答案為:R.

點評 本題考查并集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意并集的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.方程$\sqrt{-{x^2}-2x}$=kx+4有兩個不相等的實根,則k的取值范圍是( 。
A.$(\frac{15}{8},2]$B.[2,+∞)C.$(-∞,\frac{15}{8}]$D.$(\frac{15}{8},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x-$\frac{1}{x}$.
(1)利用定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)當(dāng)x∈(0,1]時,t•f(2x)≥2x-1恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin(${\frac{π}{4}$+x)cos(${\frac{π}{4}$+x),則f(x)在x∈[0,$\frac{π}{2}}$]上的最大值與最小值之差為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若關(guān)于x的不等式|2x+5|+|2x-1|-t≥0的解集為R.
(1)求實數(shù)t的最大值s;
(2)若正實數(shù)a,b滿足4a+5b=s,求y=$\frac{1}{a+2b}$+$\frac{4}{3a+3b}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-$\frac{1}{2}$x+$\frac{a}{x}$,a∈R.
(1)當(dāng)a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)當(dāng)x>1時,f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.等差數(shù)列{an}的公差不為零,首項a1=1,a2是a1和a5的等比中項,則數(shù)列的前10項之和是( 。
A.90B.100C.145D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線l:mx-m2y-1=0經(jīng)過點P(2,1),則傾斜角與直線l的傾斜角互為補角的一條直線方程是( 。
A.x-y-1=0B.2x-y-3=0C.x+y-3=0D.x+2y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\sqrt{{x^2}+4x+5}+\sqrt{{x^2}-2x+10}$的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案