精英家教網 > 高中數學 > 題目詳情

已知二次函數f(x)滿足:①在x=1時有極值;②圖象過點(0,-3),且在該點處的切線與直線2xy=0平行.

(1)求f(x)的解析式;

(2)求函數g(x)=f(x2)的單調遞增區(qū)間.

答案:
解析:

  解:(1)設f(x)=ax2bxc,則f¢ (x)=2axb

  由題設可得:解得

  所以f(x)=x2-2x-3.

  (2)g(x)=f(x2)=x4-2x2-3,g¢ (x)=4x3-4x=4x(x-1)(x+1).列表:

  由表可得:函數g(x)的單調遞增區(qū)間為(-1,0),(1,+∞).


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+
1
2
滿足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表達式;
(2)若f(x)在定義域(-1,t]上的值域為(-1,1],求t的取值范圍;
(3)是否存在實數m、n(m<n),使f(x)定義域和值域分別為[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c,函數y=f(x)+
2
3
x-1
的圖象過原點且關于y軸對稱,記函數 h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)當a=
1
10
時,求函數y=h(x)
的單調遞減區(qū)間;
(Ⅲ)試討論函數 y=h(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數,試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調性;
(3)若方程g(x)=x的兩實根為x1,x2f(x)=0的兩根為x3,x4,求使x3<x1<x2<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=
-x2-x+2
的定義域為A,若對任意的x∈A,不等式x2-4x+k≥0成立,則實數k的最小值為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數,試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調性;
(3)當b=2a時,問是否存在x的值,使?jié)M足-1≤a≤1且a≠0的任意實數a,不等式f(x)<4恒成立?并說明理由.

查看答案和解析>>

同步練習冊答案