定義平面向量之間的一種運(yùn)算“*”如下,對(duì)任意的數(shù)學(xué)公式,數(shù)學(xué)公式,令數(shù)學(xué)公式,下面說(shuō)法正確的有
①若數(shù)學(xué)公式,則數(shù)學(xué)公式
數(shù)學(xué)公式
③對(duì)任意的λ∈R,有數(shù)學(xué)公式


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    0個(gè)
C
分析:依據(jù)題中的定義運(yùn)算“*”,逐一檢驗(yàn)各個(gè)選項(xiàng)中的等式兩邊是否相等,從而得出結(jié)論.
解答:①設(shè)=(x,y),∵,則 =(λx,λy ),*=x•λy-y•λx=0,故①正確.
+=(mq-np)2+(mp+nq)2=m2q2+n2p2+m2p2+n2q2,
=(m2+n2)(p2+q2)=m2q2+n2p2+m2p2+n2q2,故②正確.
③對(duì)任意的λ∈R,有*=(λm,λn )*(p,q)=λmq-λnp,
λ( *)=λ (mq-np)=λmq-λnp,∴*=λ( *) 成立,故③正確.
綜上,①②③都正確,
故選 C.
點(diǎn)評(píng):本題考查兩個(gè)向量的數(shù)量積的運(yùn)算,共線(xiàn)向量的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
b
=mq-np
,下面說(shuō)法錯(cuò)誤的是( 。
A、若
a
b
共線(xiàn),則
a
b
=0
B、
a
b
=
b
a
C、對(duì)任意的λ∈R,有
a
)
b
=λ(
a
b
D、(
a
b
2+(
a
b
2=|
a
|2|
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義平面向量之間的一種運(yùn)算“*”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
*
b
=mq-np
.給出以下四個(gè)命題:(1)若
a
b
共線(xiàn),則
a
*
b
=0
;(2)
a
*
b
=
b
*
a
;(3)對(duì)任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)
(4)(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
.(注:這里
a
b
a
b
的數(shù)量積)則其中所有真命題的序號(hào)是(  )
A、(1)(2)(3)
B、(2)(3)(4)
C、(1)(3)(4)
D、(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義平面向量之間的一種運(yùn)算“*”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
?
b
=mq-np
.給出以下四個(gè)命題:(1)若
a
b
共線(xiàn),則
a
?
b
=0
;(2)
a
?
b
=
b
?
a
;(3)對(duì)任意的λ∈R,有
a
)?
b
=λ(
a
?
b
)
;(4)(
a
*
b
2
+(
a
b
2
=|
a
|2?|
b
|2
.(注:這里
a
?
b
a
b
的數(shù)量積)其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),點(diǎn)N(x,y)滿(mǎn)足
ON
=a⊙b(其中O為坐標(biāo)原點(diǎn)),則|
ON
|2
的最大值為( 。
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
b
=mq-np
,則下列說(shuō)法錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案