已知數(shù)列{an}是各項(xiàng)均為正數(shù)且公比不等于1的等比數(shù)列.對(duì)于函數(shù)y=f(x),若數(shù)列{lnf(an)}為等差數(shù)列,則稱函數(shù)f(x)為“保比差數(shù)列函數(shù)”.現(xiàn)有定義在(0,+∞)上的如下函數(shù):

②f(x)=x2,
③f(x)=ex,
,
則為“保比差數(shù)列函數(shù)”的所有序號(hào)為( )
A.①②
B.③④
C.①②④
D.②③④
【答案】分析:設(shè)數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,驗(yàn)證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結(jié)論.
解答:解:設(shè)數(shù)列{an}的公比為q(q≠1)
①由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)-lnf(an)=ln-ln=ln=-lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
②由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)-lnf(an)=ln-ln=lnq2=2lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
③由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)-lnf(an)=ln-ln=an+1-an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;
④由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)-lnf(an)=ln-ln=lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
綜上,為“保比差數(shù)列函數(shù)”的所有序號(hào)為①②④
故選C.
點(diǎn)評(píng):本題考查新定義,考查對(duì)數(shù)的運(yùn)算性質(zhì),考查等差數(shù)列的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•南匯區(qū)二模)已知數(shù)列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足數(shù)學(xué)公式(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案