賣水果的某個(gè)體戶,在不下雨的日子可賺100元,在雨天則要損失10元。該地區(qū)每年下雨的日子約有130天,則該個(gè)體戶每天獲利的期望值是(1年按365天計(jì)算)(   )
A.90元B.45元 C.55元D.60.82元
D
該個(gè)體戶每天的獲利是隨機(jī)變量,記為X.X可能取值100,-10,其中P(X=-10)=,P(X=100)=,所以EX=100+(-10).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩名射擊運(yùn)動(dòng)員,甲射擊一次命中環(huán)的概率為,乙射擊一次命中環(huán)的概率為,若他們獨(dú)立的射擊兩次,設(shè)乙命中環(huán)的次數(shù)為,則,為甲與乙命中環(huán)的次數(shù)的差的絕對(duì)值.求的值及的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人有10萬元,有兩種投資方案:一是購買股票,二是存入銀行獲取利息。買股票的收益取決于經(jīng)濟(jì)形勢(shì),假設(shè)可分為三種狀態(tài):形勢(shì)好、形勢(shì)中等、形勢(shì)不好。若形勢(shì)好可獲利4萬元,若形勢(shì)中等可獲利1萬元,若形勢(shì)不好要損失2萬元。如果存入銀行,假設(shè)年利率為8%(不考慮利息可得稅),可得利息8000元。又假設(shè)經(jīng)濟(jì)形勢(shì)好、中、差的概率分別為30%,50%,20%。試問應(yīng)選擇哪一種方案,可使投資的效益較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A、B兩臺(tái)機(jī)床同時(shí)加工零件,每生產(chǎn)一批數(shù)量較大的產(chǎn)品時(shí),出次品的概率如下表所示:
A機(jī)床                                          B機(jī)床
次品數(shù)ξ1
0
1
2
3
概率P
0.7
0.2
0.06
0.04
次品數(shù)ξ2
0
1
2
3
概率P
0.8
0.06
0.04
0.10
 
問哪一臺(tái)機(jī)床加工質(zhì)量較好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在有獎(jiǎng)摸彩中,一期(發(fā)行10000張彩票為一期)有200個(gè)獎(jiǎng)品是5元的,20個(gè)獎(jiǎng)品是25元的,5個(gè)獎(jiǎng)品是100元的.在不考慮獲利的前提下,一張彩票的合理價(jià)格是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面朝上的次為;乙拋擲3次,記正面朝上的次為.(Ⅰ)分別求的期望;(Ⅱ)規(guī)定:若>,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)甲、乙的學(xué)習(xí)成績(jī)進(jìn)行抽樣分析,各抽門功課,得到的觀測(cè)值如下:

問:甲、乙誰的平均成績(jī)最好?誰的各門功課發(fā)展較平衡?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在1,2,3…,9,這9個(gè)自然數(shù)中,任取3個(gè)數(shù).
(Ⅰ)求這3個(gè)數(shù)中,恰有一個(gè)是偶數(shù)的概率;          
(Ⅱ)記ξ為這三個(gè)數(shù)中兩數(shù)相鄰的組數(shù),(例如:若取出的數(shù)1、2、3,則有兩組相鄰的數(shù)1、2和2、3,此時(shí)ξ的值是2)。求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)在七月初七舉行抽獎(jiǎng)促銷活動(dòng),要求一男一女參加抽獎(jiǎng),抽獎(jiǎng)規(guī)則是:從裝有3個(gè)白球和2個(gè)紅球的箱子中每次隨機(jī)地摸出一個(gè)球,記下顏色后放回.若1人摸出一個(gè)紅球得獎(jiǎng)金10元,1人摸出2個(gè)紅球得獎(jiǎng)金50元.規(guī)定:一對(duì)男女中男的摸一次,女的摸二次.令ξ表示兩人所得獎(jiǎng)金總額.
(1)求ξ的分布列;
(2)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案