【題目】如圖,在平面直角坐標(biāo)系 中,已知橢圓 的離心率為 ,C為橢圓上位于第一象限內(nèi)的一點.

(1)若點 的坐標(biāo)為 ,求a,b的值;
(2)設(shè)A為橢圓的左頂點,B為橢圓上一點,且 ,求直線AB的斜率.

【答案】
(1)

解:因為橢圓的離心率為 ,

所以 ,即 .①

又因為點 在橢圓上,

所以 . ②

由①②解得

因為 ,所以


(2)

法一:由①知, ,所以橢圓方程為 ,即

設(shè)直線OC的方程為 , ,

所以 .因為 ,所以

因為 ,所以 .可設(shè)直線 的方程為

所以 ,得

因為 ,所以 ,于是 ,

,所以

所以直線AB的斜率為

法二:由(1)可知,橢圓方程為 ,則

設(shè) ,

,得

所以 ,

因為點B,點C都在橢圓 上,

所以

解得 , ,

所以直線AB的斜率


【解析】(1)將點代入橢圓,結(jié)合a,b,c的關(guān)系即可求出a,b。(2)設(shè)出B,C點,由 向量關(guān)系得到點B、C間坐標(biāo)關(guān)系,再將點B或C代入橢圓解出B或C點,即可求出斜率。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin3x+cos3x的圖象沿x軸向左平移個單位后,得到一個偶函數(shù)的圖象,則的一個可能取值為(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.點E是棱PC的中點,平面ABE與棱PD交于點F. (Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF與平面AEF所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC 中,角 A,B,C 的對邊分別為 a,b,c.若a=2bsinC,則tanA+tanB+tanC的最小值是(
A.4
B.
C.8
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為
(Ⅰ)設(shè)P是曲線C上的一個動點,當(dāng)a=2時,求點P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某樂隊參加一戶外音樂節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機選擇4首進行演唱.
(1)求該樂隊至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊的互動指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂隊的互動指數(shù)為2a.求觀眾與樂隊的互動指數(shù)之和 的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N*
(Ⅰ)設(shè)bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式an
(Ⅱ)設(shè)Cn= ,數(shù)列{CnCn+2}的前n項和為Tn , 是否存在正整數(shù)m,使得Tn 對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以雙曲線 (a>0,b>0)上一點M為圓心的圓與x軸恰相切于雙曲線的一個焦點F,且與y軸交于P、Q兩點.若△MPQ為正三角形,則該雙曲線的離心率為( )
A.4
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線 的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為(
A. ??
B. ??
C. ??
D.

查看答案和解析>>

同步練習(xí)冊答案