已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[01]上單調遞增,在區(qū)間[1,2]上單調遞減,(1)a的值;

  (2)若點A(x0f(x0))在函數(shù)f(1)的圖象上,求證點A關于直線x=1的對稱點B也在函數(shù)f(x)的圖象上;

  (3)是否存在實數(shù)6,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有3個交點?若求出實數(shù)b的值;若不存在,試說明理由。

 

答案:
解析:

  (1)解:∵ 函數(shù)在區(qū)間[0,1]上單調遞增,在區(qū)間[1,

    2]上單調遞減,

    ∴ 時,y取得極大值。

    ∴ f(x)=0

    ∵ f(x)=4x3-12x2+2ax,

    ∴ 4-12+2a

    ∴ a=4

    (2)證明:點A(x0,f(x0))關于直線x=1的對稱點B的坐標為(2-x0f(x0))。

    f(2-x0)=(2-x0)4-4(2-x0)3+(2-x0)2-1

         =(2-x0)2[(2-x0)-22]-1

         =x04-4x03+4x0-1

         =f(x0)

     ∴ 點A關于直線x=1的對稱點B也在函數(shù)f(x)的圖象上。

    (3)解:函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有3個交點,等價于方程恰有3個不等實根。

   

    ∵ x=0是其中一個根,

    ∴ 方程有兩個非零不等實根。

    .

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省東陽中學高三10月階段性考試數(shù)學理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數(shù)學試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習冊答案