當雙曲線上的動點P在雙曲線上運動時,若P到一條漸近線的距離越近,則到另一條漸近線的距離越遠,那么動點P到兩條漸近線距離之積及距離之和是否為定值?

答案:
解析:

  探究:設P(x0,y0)是雙曲線上的動點,雙曲線方程為=1(a>0,b>0),則漸近線方程為bx+ay=0,P到bx+ay=0的距離d1,P到bx-ay=0的距離d2

  ∴d1d2

  ∵P在雙曲線上,∴b2x02-a2y02=a2b2

  ∴d1d2,即P到兩漸近線距離之積為定值,而d1+d2中含有x0、y0是一個變量,故P到兩漸近線距離之和不是定值.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•南寧二模)設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(Ⅰ)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知橢圓具有性質(zhì):若M、N是橢圓C上關于原點對稱的兩個點,點P在橢圓上任意一點,當直線PM、PN的斜率都存在,并記為KPM、KPN時,那么KPM與KPN之積是與點P位置無關的定值.設對雙曲線
x2
a2
-
y2
b2
=1寫出具有類似特性的性質(zhì)(不必給出證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點,焦點在x軸上,右準線為一條漸近線的方程是過雙曲線C的右焦點F2的一條弦交雙曲線右支于P、Q兩點,R是弦PQ的中點.

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動點,且2|AB|=|F1F2|,求線段AB的中點M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準線L的左側(cè)能作出直線m:x=a,使點R在直線m上的射影S滿足,當點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設F1、F2分別為橢圓C:數(shù)學公式+數(shù)學公式=1(a>b>0)的左、右兩個焦點.
(Ⅰ)若橢圓C上的點A(1,數(shù)學公式)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點,Q(0,數(shù)學公式),求|PQ|的最大值;
(Ⅲ)已知橢圓具有性質(zhì):若M、N是橢圓C上關于原點對稱的兩個點,點P在橢圓上任意一點,當直線PM、PN的斜率都存在,并記為KPM、KPN時,那么KPM與KPN之積是與點P位置無關的定值.設對雙曲線數(shù)學公式-數(shù)學公式=1寫出具有類似特性的性質(zhì)(不必給出證明).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省蘇州市張家港外國語學校高二(上)周日數(shù)學試卷5(理科)(解析版) 題型:解答題

設F1、F2分別為橢圓C:+=1(a>b>0)的左、右兩個焦點.
(Ⅰ)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點,Q(0,),求|PQ|的最大值;
(Ⅲ)已知橢圓具有性質(zhì):若M、N是橢圓C上關于原點對稱的兩個點,點P在橢圓上任意一點,當直線PM、PN的斜率都存在,并記為KPM、KPN時,那么KPM與KPN之積是與點P位置無關的定值.設對雙曲線-=1寫出具有類似特性的性質(zhì)(不必給出證明).

查看答案和解析>>

同步練習冊答案