(不等式選做題) 若關(guān)于x的不等式|x|+|x-1|≤a有解,則實(shí)數(shù)a的取值范圍是   
【答案】分析:由于|x|+|x-1|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到0和1對(duì)應(yīng)點(diǎn)的距離之和,其最小值為1,再根據(jù)|x|+|x-1|≤a有解,求出實(shí)數(shù)a的取值范圍.
解答:解:|x|+|x-1|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到0和1對(duì)應(yīng)點(diǎn)的距離之和,其最小值為1,故當(dāng)a≥1時(shí),關(guān)于x的不等式|x|+|x-1|≤a有解,
故實(shí)數(shù)a的取值范圍為[1,+∞),
故答案為[1,+∞).
點(diǎn)評(píng):本題主要考查絕對(duì)值的意義,絕對(duì)值不等式的解法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點(diǎn)的個(gè)數(shù)為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
(A)(幾何證明選做題)已知PA是圓D的切線,切點(diǎn)為A,PA=2,AC是圓D的直徑,PC與圓D交于點(diǎn)B,PB=1,則圓O的半徑r=
3
3

(B)(極坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,曲線p=4cos(θ-
π
3
)上任意兩點(diǎn)間的距離的最大值為
4
4

(C)(不等式選做題)若不等式|x-2|+|x+1|≥α對(duì)于任意x∈R恒成立,則實(shí)數(shù)a的取值范圍為
{α|α≤3}
{α|α≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴溪市模擬)(不等式選做題) 若關(guān)于x的不等式|x|+|x-1|≤a有解,則實(shí)數(shù)a的取值范圍是
[1,+∞)
[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-5不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(不等式選做題)
若不等式|x-2|+|x+3|<a的解集為∅,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案