2.已知雙曲線C的中心在原點(diǎn),虛軸長(zhǎng)為6,且以橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1的焦點(diǎn)為頂點(diǎn),則雙曲線C的方程為${x}^{2}-\frac{{y}^{2}}{9}=1$.

分析 確定橢圓的焦點(diǎn),從而可得雙曲線的頂點(diǎn),進(jìn)而可求雙曲線的方程.

解答 解:由題意,橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1的焦點(diǎn)坐標(biāo)為(±1,0),∴雙曲線的頂點(diǎn)坐標(biāo)為(±1,0),
∵雙曲線以橢圓的焦點(diǎn)為頂點(diǎn),∴雙曲線的頂點(diǎn)為(±1,0),
∴a=1,
∵虛軸長(zhǎng)為6,
∴b=3,
∴雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{9}=1$.
故答案為:${x}^{2}-\frac{{y}^{2}}{9}=1$.

點(diǎn)評(píng) 本題考查橢圓,雙曲線的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線3x+$\sqrt{3}$y-4=0的傾斜角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知直線y=-$\frac{\sqrt{3}}{3}$x+5的傾斜角是所求直線l的傾斜角的大小的5倍,且直線l分別滿(mǎn)足下列條件:(結(jié)果化成一般式)
(1)若過(guò)點(diǎn)P(3,-4),求直線l的方程. 
(2)若在x軸上截距為-2,求直線l的方程.
(3)若在y軸上截距為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若5a=2b=100,則$\frac{1}{a}$+$\frac{1}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x).滿(mǎn)足xf′(x)+2f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{2e}$,則f(π)、f(2sin$\frac{5π}{7}$)、f(4)的大小關(guān)系為(  )
A.f(2sin$\frac{5π}{7}$)<f(π)<f(4)B.f(4)<f(π)<f(2sin$\frac{5π}{7}$)C.f(π)<f(2sin$\frac{5π}{7}$)<f(4)D.f(4)<f(2sin$\frac{5π}{7}$)<f(π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)命題p:方程$\frac{{x}^{2}}{k+1}$-$\frac{{y}^{2}}{5-k}$=1表示焦點(diǎn)在x軸上的雙曲線,命題q:?x∈R,x2+1>k.
(1)若p為真命題,求實(shí)數(shù)k的取值范圍;
(2)若“p且q”為假命題,“p或q”為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)單調(diào)遞減的函數(shù)是( 。
A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,P是△ABC所在平面外一點(diǎn),E,F(xiàn),G分別在AB,BC,PC上,且PG=2GC,AC∥平面EFG,PB∥平面EFG.則$\frac{AE}{EB}$=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,有同學(xué)說(shuō)平面PAD∩平面PBC=P,這句話對(duì)嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案