【題目】已知互相垂直的平面α,β交于直線l,若直線m,n滿足m∥α,n⊥β,則(
A.m∥l
B.m∥n
C.n⊥l
D.m⊥n

【答案】C
【解析】解:∵互相垂直的平面α,β交于直線l,直線m,n滿足m∥α,∴m∥β或mβ或m與β相交,lβ,
∵n⊥β,
∴n⊥l.
故選:C.
【考點精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosαcosβ﹣sinαsinβ=0,那么sinαcosβ+cosαsinβ的值為( )
A.﹣1
B.0
C.1
D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O是空間一點,a,b,c是空間三條直線,α,β是空間兩個平面,則下列命題中,逆命題不成立的是(
A.當a∩b=O且aα,bα?xí)r,若c⊥a,c⊥b,則c⊥α
B.當a∩b=O且aα,bα?xí)r,若a∥β,b∥β,則α∥β
C.當bα?xí)r,若b⊥β,則α⊥β
D.當bα?xí)r,且cα?xí)r,若c∥α,則b∥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“a=1”是“直線l1:ax+(a﹣1)y﹣1=0與直線l2:(a﹣1)x+(2a+3)y﹣3=0垂直”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個,從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或白球的概率是(
A.0.3
B.0.55
C.0.75
D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若全集U={﹣2,﹣1,0,1,2},A={x∈Z|x2<3},則IA=(
A.{﹣2,2}
B.{﹣2,0,2}
C.{﹣2,﹣1,2}
D.{﹣2,﹣1,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,求證:
(1)A1D∥平面CB1D1;
(2)平面A1BD∥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)是偶函數(shù)且值域為[0,+∞)的是(
①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|
A.①②
B.②③
C.①④
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)l,m,n是三條不同的直線,α,β是兩個不重合的平面,則下列命題正確的是(
A.α∥β,lα,nβl∥n
B.l⊥n,l⊥αn∥α
C.l⊥α,l∥βα⊥β
D.α⊥β,lαl⊥β

查看答案和解析>>

同步練習(xí)冊答案