已知三棱柱ABCA1B1C1的三視圖如圖所示,其中主視圖AA1B1B和左視圖B1BCC1均為矩形,俯高圖△A1B1C1中,A1C1=3,A1B1=5,
(1)在三棱柱ABCA1B1C1中,求證:BCAC1;
(2)在三棱柱ABCA1B1C1中,若D是底邊AB的中點,求證:AC1∥平面CDB1;
(3)若三棱柱的高為5,求三視圖中左視圖的面積.
12
(1)因為主視圖和左視圖均為矩形、所以該三棱柱為直三棱柱,
又俯視圖△A1B1C1中,A1C1=3,A1B1=5,,
由余弦定理可得
又∵BCCC1,CC1A1C1=C1,∴BC⊥平面ACC1A1
AC1平面ACC1A1,∴BCAC1
(2)連BC1B1CM,則MBC1的中點,連DM,則DMAC1              
DM平面DCB1AC1平面DCB1,∴AC1∥平面CDB1  
(3)左視圖中BC的長等于底面△ABC中頂點C到邊AB的距離d
 ∴左視圖的面積
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE
(3)求二面角E-BD-A的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCD—中,AB=2,,E為的中點,連結ED,EC,EB和DB,
(1)求證:平面EDB⊥平面EBC;
(2)求二面角E-DB-C的正切值.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,,,底面, ,直線與底面角,點分別是的中點.
(1)求二面角的大;
(2)當的值為多少時,為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,底面是正方形的四棱錐,平面⊥平面,===2.
(I)求證:;
(II)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN;
(2)求二面角A—BNC的余弦值.


 

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個容器的外形是一個棱長為的正方體,其三視圖如圖所示,則容器的容積為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:直線平面,如圖.求證:直線與平面相交.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知向量、滿足,則的夾角為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案