精英家教網 > 高中數學 > 題目詳情

已知動點P到定點F(,0)的距離與點P到定直線l:x=的距離之比為

(1)求動點P的軌跡C的方程;

(2)設M、N是直線l上的兩個點,點E與點F關于原點O對稱,若·=0,求|MN|的最小值.

答案:
解析:

  (1)解:設點,

  依題意,有

  整理,得

  所以動點的軌跡的方程為

  (2)解:∵點與點關于原點對稱,

  ∴點的坐標為

  ∵、是直線上的兩個點,

  ∴可設,(不妨設).

  ∵,

  ∴

  即.即

  由于,則

  ∴

  當且僅當,時,等號成立.

  故的最小值為


提示:

本小題主要考查橢圓、基本不等式等知識,考查數形結合、化歸與轉化、函數與方程的數學思想方法,以及推理論證能力和運算求解能力


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知動點P到定點F(
2
,0)
的距離與點P到定直線l:x=2
2
的距離之比為
2
2

(1)求動點P的軌跡C的方程;
(2)設M、N是直線l上的兩個點,點E與點F關于原點O對稱,若
EM
FN
=0
,求|MN|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知動點P到定點F(0,-2)的距離和它到定直線l:y=-6的距離之比為
13
,求動點P的軌跡方程,并指出是什么曲線?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知動點P到定點F(0,1)的距離等于點P到定直線l:y=-1的距離.點Q(0,-1).
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點Q作軌跡C的切線,若切點A在第一象限,求切線m的方程;
(Ⅲ)過N(0,2)作傾斜角為60°的一條直線與C交于A、B兩點,求AB弦長.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年甘肅省天水市高三第六次檢測數學文卷 題型:解答題

(12分)已知動點P到定點F (, 0 ) 的距離與點 P 到定直線 l:x=2 的距離之比為

(1)求動點P的軌跡C的方程;

(2)設M、N是直線l上的兩個點,點E是點F關于原點的對稱點,若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年甘肅省天水市高三第六次檢測數學文卷 題型:解答題

(12分)已知動點P到定點F (, 0 ) 的距離與點 P 到定直線 l:x=2 的距離之比為。

(1)求動點P的軌跡C的方程;

(2)設M、N是直線l上的兩個點,點E是點F關于原點的對稱點,若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

同步練習冊答案