證明4n≥n4(n為大于3的正整數(shù)).將4換成其他更大的數(shù)試試,說(shuō)說(shuō)有什么規(guī)律.(禁用數(shù)學(xué)歸納法)
考點(diǎn):不等式的證明
專題:證明題,導(dǎo)數(shù)的綜合應(yīng)用
分析:設(shè)y=
lnx
x
,求出導(dǎo)數(shù),求出單調(diào)區(qū)間,則當(dāng)x≥4且為整數(shù)時(shí),有
lnx
x
ln4
4
,化簡(jiǎn)整理,即可得證;將4換成其他更大的數(shù),比如m,則mn≥nm(n≥m且n∈N).
解答: 證明:設(shè)y=
lnx
x
,則y′=
1-lnx
x2

當(dāng)x>e時(shí),y′<0,y為減函數(shù),當(dāng)0<x<e時(shí),y′>0,y為增函數(shù).
則當(dāng)x≥4且為整數(shù)時(shí),有
lnx
x
ln4
4
,
即有4lnx≤xln4,即lnx4≤ln4x,
即有4x≥x4,
故有4n≥n4(n為大于3的正整數(shù)).
將4換成其他更大的數(shù),比如m,則mn≥nm(n≥m且n∈N).
點(diǎn)評(píng):本題考查不等式的證明,考查導(dǎo)數(shù)的運(yùn)用:判斷函數(shù)的單調(diào)性,考查單調(diào)性的應(yīng)用,以及對(duì)數(shù)函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[t,t+2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果f(tanx)=sin2x-5sinxcosx,那么f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)定義域?yàn)閇0,3],導(dǎo)函數(shù)f′(x)在[0,3]內(nèi)圖象如圖所示,則函數(shù)f(x)在[0,3]的單調(diào)遞減區(qū)間為( 。
A、[0,1]
B、[1,2]
C、[2,3]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>1,則函數(shù)y=ax與y=(a-1)x2的圖象可能是下列四個(gè)選項(xiàng)中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知有公共焦點(diǎn)的橢圓與雙曲線的中心都為原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別F1F2,且它們?cè)诘谝幌笙薜慕稽c(diǎn)P,△PF1F2是PF1為底邊的等腰三角形,|PF1|=12,橢圓的離心率的取值范圍為(
2
5
,
4
9
),則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等比數(shù)列{an}中,f(-x)=-f(x),且x∈R是f(x)和x1,x2∈(-∞,+∞)且x1<x2的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=2n-1+an(n∈N*),求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心在第一象限的圓C與y軸相切,并且與直線4x-3y-36=0相切與A(9,0).
(1)求圓C的方程;
(2)設(shè)B為圓C上的一個(gè)動(dòng)點(diǎn),求弦AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某經(jīng)營(yíng)者在一個(gè)袋子里放3種不同顏色的小球.每種顏色的球都是3個(gè),然后讓玩的人從中一次性摸出5個(gè)球并規(guī)定如果摸出來(lái)的小球的顏色是“221”(即有2種顏色的球各為2個(gè),另一種顏色的球?yàn)?個(gè)),則玩者要交錢5元;如果摸出來(lái)的顏色是“311”,則獎(jiǎng)給玩者2元;如果摸出來(lái)的顏色是“320”則獎(jiǎng)給玩者10元.
(1)求玩者要交錢的概率;
(2)求經(jīng)營(yíng)者在一次游戲中獲利的期望(保留到0.01元).

查看答案和解析>>

同步練習(xí)冊(cè)答案