若函數(shù)y=f(x-1)的圖象與函數(shù)y=lg+1的圖象關(guān)于直線y=x對(duì)稱,則f(x)=( )
A.102x-1
B.102x
C.102x+1
D.102x+2
【答案】分析:根據(jù)兩個(gè)函數(shù)的圖象關(guān)于直線y=x對(duì)稱可知這兩個(gè)函數(shù)互為反函數(shù),故只要利用求反函數(shù)的方法求出原函數(shù)的反函數(shù),然后再求出函數(shù)f(x)的解析式即可.
解答:解∵函數(shù)y=f(x-1)的圖象與函數(shù)y=lg+1的圖象關(guān)于直線y=x對(duì)稱,
∴函數(shù)y=f(x-1)與函數(shù)y=lg+1互為反函數(shù),
又∵函數(shù)y=lg+1的反函數(shù)為:
y=102x-2,
即f(x-1)=102x-2
∴f(x)=102x
故選B.
點(diǎn)評(píng):本小題主要考查反函數(shù)、對(duì)數(shù)式的運(yùn)算等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:?x∈R,使得3x>x;命題q:若函數(shù)y=f(x-1)為奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(1,0)成中心對(duì)稱.( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=2-x的反函數(shù)是y=-log2x;
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
其中所有正確命題的序號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=
16-4x
的值域是[0,4);
③命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=0對(duì)稱.
其中所有正確命題的序號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=2-x(x>0)的反函數(shù)是y=-log2x(x>0);
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱.
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下三個(gè)命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
③若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=-1對(duì)稱.
其中正確的命題序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案