將正方形ABCD沿對角線BD折成一個120°的二面角,點C到達點C1,這時異面直線AD與BC1所成的角的余弦值是( 。
A.
2
2
B.
1
2
C.
3
4
D.
3
4
設正方形邊長為1,由題意易知∠CBC1即為AD與BC1所成的角.
設AC與BD相交于O,易知△CC1O為正三角形,故CC1=
2
2
,在△CBC1中,
由余弦定理可得所求余弦值為
3
4

故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,M、N分別是AA1、AB上的點,若∠NMC1=90°,那么∠NMB1=( 。
A.大于90°B.等于90°C.小于90°D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示三棱錐P-ABC中,異面直線PA與BC所成的角為90°,二面角P-BC-A為60°,△PBC和△ABC的面積分別為16和10,BC=4.
求:(1)PA的長;
(2)三棱錐P-ABC的體積VP-ABC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AC=BC=1,AA1=2,∠ACB=90°,M是A1B1的中點.
(1)求證:C1M⊥平面ABB1A1
(2)求異面直線A1B與B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為AA1,AB,BB1,B1C1的中點,則異面直線EF與GH所成的角等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:四面體A-BCD被一平面所截,截面EFHG是一個矩形,
(1)求證:ABFH;
(2)求異面直線AB、CD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,若點M是棱BC上的中點,則D1B與AM所成角的余弦值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正△ABC的頂點A在平面α內,頂點B,C在平面α的同一側,D為BC的中點,若△ABC在平面α內的射影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的最小值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為2的正方形A1ACC1繞直線CC1旋轉90°得到正方形B1BCC1,D為CC1的中點,E為A1B的中點,G為△ADB的重心.
(1)求直線EG與直線BD所成的角;
(2)求直線A1B與平面ADB所成的角的正弦值.

查看答案和解析>>

同步練習冊答案