設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.求f(x)的單調(diào)區(qū)間與極值.
分析:由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表討論能求出f(x)的單調(diào)區(qū)間及極值.
解答:解:∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.
于是當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x (-∞,ln2) ln2 (ln2,+∞)
f′(x) - 0 +
f(x) 單調(diào)遞減? 2(1-ln2+a) 單調(diào)遞增?
故f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),單調(diào)遞增區(qū)間是(ln2,+∞),
f(x)在x=ln2處取得極小值,極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
點(diǎn)評:本題考查函數(shù)的單調(diào)區(qū)間及極值的求法,具體涉及到導(dǎo)數(shù)的性質(zhì)、函數(shù)增減區(qū)間的判斷、極值的計(jì)算,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函數(shù),試求a的值;
(2)在(1)的條件下,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函數(shù)的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-2)x的導(dǎo)函數(shù)是f'(x)是偶函數(shù),則曲線y=f(x)在原點(diǎn)處的切線方程為
y=-2x
y=-2x

查看答案和解析>>

同步練習(xí)冊答案