設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且,
(1)求,的通項(xiàng)公式;
(2)記的前項(xiàng)和為,求證:;
(3)若均為正整數(shù),且記所有可能乘積的和,求證:.
(1) (2)證法一:放縮法;
(2)證法二: 應(yīng)用
(3)證法一:錯(cuò)位相減法;證法二:用數(shù)學(xué)歸納法證明。
解析試題分析:(1)設(shè)的公比為的公差為,則 2分
解得所以 5分
(2)證法一:由題意得 6分
8分
所以 9分
(2)證法二:由題意得 6分
,當(dāng)時(shí)
且也成立, 8分
所以 9分
(3)證法一:由題意
11分
令
以上兩式相減得 13分
又,所以 14分
證法二:用數(shù)學(xué)歸納法證明。
(1)當(dāng)時(shí),所以結(jié)論成立。 10分
(2)假設(shè)當(dāng)時(shí)結(jié)論成立,即。 11分
當(dāng)時(shí),
,所以當(dāng)時(shí)也成立 13分
綜合(1)、(2)知對任意都成立 14分
考點(diǎn):本題主要考查等比數(shù)列的通項(xiàng)公式,“錯(cuò)位相減法”,數(shù)學(xué)歸納法。
點(diǎn)評:典型題,本題綜合性較強(qiáng),處理的方法多樣。涉及數(shù)列不等式的證明問題,提供了“錯(cuò)位相減求和、放縮、證明”和“數(shù)學(xué)歸納法”等證明方法,能拓寬學(xué)生的視野。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足 ,求的通項(xiàng)公式;
(3)求數(shù)列前 項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),數(shù)列是公差為d的等差數(shù)列,是公比為q()的等比數(shù)列.若
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)n均有,求 的值;
(Ⅲ)試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,是數(shù)列前項(xiàng)和,,當(dāng)
(1)證明為等差數(shù)列;;
(2)設(shè)求數(shù)列的前項(xiàng)和;
(3)是否存在自然數(shù)m,使得對任意自然數(shù),都有成立?若存在,
求出m 的最大值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和;
(3)設(shè),記,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中, ,().
(1)計(jì)算,,;
(2)猜想數(shù)列的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知點(diǎn)(1,)是函數(shù)且)的圖象上一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足().
(1)求數(shù)列和的通項(xiàng)公式;
(2)若數(shù)列{前項(xiàng)和為,問>的最小正整數(shù)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com