已知函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)
,若f(
π
6
)=f(
π
3
)
且f(x)在區(qū)間(
π
6
π
3
)
上有最小值,無最大值,則ω的值為( 。
A.
2
3
B.
5
3
C.
14
3
D.
38
3
∵f(x)=sin(ωx+
π
3
)(ω>0),且f(
π
6
)=f(
π
3
),
在區(qū)間(
π
6
,
π
3
)上有最小值,無最大值,
∴直線x=
π
6
+
π
3
2
=
π
4
為f(x)=sin(ωx+
π
3
)(ω>0)的一條對(duì)稱軸,
∴ω•
π
4
+
π
3
=2kπ-
π
2
(k∈Z),
∴ω=4(2k-
5
6
)(k∈Z),又ω>0,
∴當(dāng)k=1時(shí),ω=
14
3

故選:C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823002901220473.gif" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823002901236286.gif" style="vertical-align:middle;" />.試求函數(shù))的最小正周期和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=tan(2x-
π
4
)
的周期是( 。
A.πB.
π
2
C.
π
4
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖為f(x)=Asin(ωx+ϕ)(A>0,?>0,ϕ∈(-π,0))的圖象的一段,
(Ⅰ)求其解析式.
(Ⅱ)將f(x)圖象上所有的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)放大到原來的2倍,然后再將新的圖象向左平移
π
2
個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在x∈[0,
π
2
]
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,則f(2010)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=sin(ωx+
π
3
)
(ω>0),f(
π
6
)=f(
π
3
),且f(x)在區(qū)間(
π
6
,
π
3
)
上有最小值,無最大值,則ω=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

要得到函數(shù)y=2sin(3x-
π
5
)
的圖象,只需將函數(shù)y=2sin3x的圖象向______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知
a
=(cosx,sinx),
b
=(sinx,cosx),與f(x)=
a
b
要得到函數(shù)y=sin4x-cos4x的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向左平移
π
2
個(gè)單位長(zhǎng)度
B.向右平移
π
2
個(gè)單位長(zhǎng)度
C.向左平移
π
4
個(gè)單位長(zhǎng)度
D.向右平移
π
4
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
a
=(1+cosωx,1),b=(1,a+
3
sinx)(ω為常數(shù)且ω>0),函數(shù)f(x)=
a
b
在R上的最大值為2.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)把函數(shù)y=f(x)的圖象向右平移
π
個(gè)單位,可得函數(shù)y=g(x)的圖象,若y=g(x)在[0,
π
4
]上為增函數(shù),求ω取最大值時(shí)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案