已知隨機變量 X服從正態(tài)分布 N(5,4),且 P( X>k)=P( X<k-4),則k的值為( 。
A、6B、7C、8D、9
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:根據(jù)正態(tài)曲線關于x=5對稱,得到兩個概率相等的區(qū)間關于x=5對稱,得到關于k的方程,解方程即可.
解答: 解:∵隨機變量 X服從正態(tài)分布 N(5,4),且 P( X>k)=P( X<k-4),
(k-4)+k
2
=5
,
∴k=7,
故選B.
點評:本題考查正態(tài)分布曲線的特點及曲線所表示的意義,本題主要考查曲線關于x=5對稱,考查關于直線對稱的點的特點,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線l:y=kx-1與曲線C:x2+y2-4x+3=0有且僅有2個公共點,則實數(shù)k的取值范圍是( 。
A、(0,
4
3
)
B、(0,
4
3
]
C、{
1
3
,1,
4
3
}
D、{
1
3
,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(2,2)引橢圓x2+4y2=4的切線,則切線方程為( 。
A、3x-8y+10=0
B、5x+8y-2=0
C、3x-8y+10=0或x-2=0
D、5x+8y-2=0或3x+10=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C所對的邊分別為a,b,c,若A=60°,a=
3
,b+c=3,則△ABC的面積為( 。
A、
3
4
B、
3
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(x2+2)(
1
x2
-1)5的展開式的常數(shù)項是( 。
A、2B、3C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}前n項和為Sn,且Sn+an=2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=a1,bn=
3bn-1
bn-1+3
,n≥2.求數(shù)列{bn}的通項公式;
(3)(理)設cn=
an
bn
,求數(shù)列{cn}的前n和Tn
(文)設cn=
n
an
,求數(shù)列{cn}的前n和En

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足
2x+y≥4
x-y≥-1
x-2y≤2
,則z=x+y的最小值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知映射f:A→B,其中A=[-1,1],B=R,對應法則是f:x→log 
1
2
(2-x2),對于實數(shù)k∈B,在集合A中存在原像,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin
α
2
=
3
3
,則cosα=
 

查看答案和解析>>

同步練習冊答案