以直角坐標(biāo)系xOy的原點為極點,Ox軸的非負(fù)軸為極軸建立極坐標(biāo)系Ox,已知圓C的極坐標(biāo)方程為ρ=2cosθ,點P(x,y)是圓C上一點,則x+y的最大值為
 
考點:簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:首先,將給定的極坐標(biāo)方程化為直角坐標(biāo)方程然后,根據(jù)直線與圓的位置關(guān)系求解.
解答: 解:由ρ=2cosθ,得
(x-1)2+y2=1,
設(shè)x+y=k,
聯(lián)立方程組
x2+y2-2x=0
y=-x+k

∴2x2-2(k+1)x+k2=0,
∴△=(k+1)2-8k2≥0
∴1-
2
≤k≤1+
2
,
∴x+y的最大值為
2
+1

故答案為:
2
+1
點評:本題重點考查了直線與圓的位置關(guān)系、圓的極坐標(biāo)方程等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求證:tan
θ
2
-
1
tan
θ
2
=-
2
tanθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在定義域的公共部分內(nèi),兩奇函數(shù)之積(商)為
 
函數(shù);兩偶函數(shù)之積(商)為
 
函數(shù);一奇一偶函數(shù)之積(商)為
 
函數(shù);(注:取商時應(yīng)分母不為零)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第一象限角,且sin2α+sinαcosα=
3
5
,tan(α-β)=-
3
2
,則tan(β-2α)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-
3
2
x2在x=1處的切線方程為12x-2y-15=0.
(1)求a的值;
(2)討論f(x)的單調(diào)性并求f(x)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,k),
b
=(-3,k),且
a
b
夾角為鈍角,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1,0),
b
=(-1,0,2),且(x
a
+
b
)⊥(
a
-
b
),則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x∈[-1,1],y∈[0,2],則點P(x,y)落在區(qū)域
2x-y+2≥0
x-2y+1≤0
x+y-3≤0
內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1中,AC=CC1=BC=1,∠BCA=90°,D、D1分別是AB與A1B1的中點.
(1)求異面直線AC1與A1B1所成的角的大;
(2)求證:平面AC1D1∥平面B1CD.

查看答案和解析>>

同步練習(xí)冊答案