(12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;
(2)若的前n項和為Tn,求Tn

(1)見解析;(2)

解析試題分析:(1)要證明一個數(shù)列是等差數(shù)列,關(guān)鍵是證明從第二項起后一項與前一項的差都為同一個常數(shù)即可。
(2)在第一問的基礎(chǔ)上,進(jìn)一步結(jié)合錯位相減法求數(shù)列的和。
解。(1)由題意,
當(dāng)




是等差數(shù)列
(2)
 ①
 ②
①—②得

考點:本題主要考查了利用通項公式與前n項和關(guān)系式的運用求解得到其通項公式,同時能利用等差數(shù)列的定義得到證明,和數(shù)列的求和運用。
點評:解決該試題的關(guān)鍵是根據(jù)通項公式與前n項和關(guān)系式得到其通項公式,以及錯位相減法求數(shù)列的和的運用。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分13分)已知各項均為正數(shù)的數(shù)列是數(shù)列的前n項和,對任意,有2Sn=2
(Ⅰ)求常數(shù)p的值; 
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)記,()若數(shù)列從第二項起每一項都比它的前一項大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義數(shù)列,(例如時,)滿足,且當(dāng))時,.令
(1)寫出數(shù)列的所有可能的情況;(5分)
(2)設(shè),求(用的代數(shù)式來表示);(5分)
(3)求的最大值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
已知數(shù)列的前項和滿足,等差數(shù)列滿足,。
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,問>的最小正整數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足
(1)證明:數(shù)列是等差數(shù)列;  (2)求數(shù)列的通項公式
(3)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

投擲一枚均勻硬幣2次,記2次都是正面向上的概率為,恰好次正面向上的概率為;等比數(shù)列滿足:
(I)求等比數(shù)列的通項公式;
(II)設(shè)等差數(shù)列滿足:,,求等差數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù)數(shù)列的前n項和為,
,在曲線
(1)求數(shù)列{}的通項公式;(II)數(shù)列{}首項b1=1,前n項和Tn,且
,求數(shù)列{}通項公式bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分16分)設(shè)不等式組所表示的平面區(qū)域為,記內(nèi)的格點(格點即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點)個數(shù)為
(1)求的值及的表達(dá)式;
(2)記,試比較的大。蝗魧τ谝磺械恼麛(shù),總有成立,求實數(shù)的取值范圍;
(3)設(shè)為數(shù)列的前項的和,其中,問是否存在正整數(shù),使成立?若存在,求出正整數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

計算:=_________.

查看答案和解析>>

同步練習(xí)冊答案