如圖6,已知動圓M過定點F(1,0)且與x軸相切,點F 關于圓心M 的對稱點為 F',動點F’的軌跡為C.
(1)求曲線C的方程;
(2)設是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P 、Q.
①證明:直線PQ的斜率為定值;
②記曲線C位于P 、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的
距離最大,求點B的坐標.
(1);(2)見解析.
【解析】第一問中利用直線育園的位置關系可知得到曲線C的軌跡方程
第二問中,(法1)由題意,直線AP的斜率存在且不為零,如圖6-2.
設直線AP的斜率為k(),則直線AQ的斜率為-k. ………………6分
因為是曲線C:上的點,
所以,直線AP的方程為.
由與聯(lián)立,
解之得,
所以點P的坐標為(,),
以-k替換k,得點Q的坐標為(,)
所以直線PQ的斜率為定值
再就是由①可知,,,
,所以直線QP的方程為,
整理得得到B的坐標。
解:(1)(法1)設,因為點在圓M上,
且點F關于圓心M的對稱點為F’,
所以, …………1分
且圓M的直徑為.…………2分
由題意,動圓M與y軸相切,
所以,兩邊平方整理得:,
所以曲線C的方程為. ………………………………5分
(法2)因為動圓M過定點且與x軸相切,所以動圓M在x軸上方,
連結(jié)FF’,因為點F關于圓心M的對稱點為F’,所以FF’為圓M的直徑.
過點M作軸,垂足為N,過點F’作軸,垂足為E(如圖6-1).
在直角梯形EOFF’中,,
即動點F’到定點的距離比到軸的距離大1. ……………………………3分
又動點F’于軸的上方(包括軸上),
所以動點F’到定點的距離與到定直線y=-1的距離相等.
故動點F’的軌跡是以點為焦點,以直線y=1為準線的拋物線.
所以曲線C的方程為. ……………………………5分
(2)①(法1)由題意,直線AP的斜率存在且不為零,如圖6-2.
設直線AP的斜率為k(),則直線AQ的斜率為-k. ………………6分
因為是曲線C:上的點,
所以,直線AP的方程為.
由與聯(lián)立,
解之得,
所以點P的坐標為(,),
以-k替換k,得點Q的坐標為(,),. ………………8分
所以直線PQ的斜率為定值.………………10分
(法2)因為是曲線C:上的點,所以,
又點P、Q在曲線C:上,所以可設,, …6分
而直線AP,AQ的傾斜角互補,
所以它們的斜率互為相反數(shù),即,整理得.8分
所以直線pq的斜率為定值. ………10分
②(法1)由①可知,,
,所以直線QP的方程為,
整理得. …………11分
設點在曲線段l上,因為P、Q兩點的橫坐標分別為和,
所以B點的橫坐標X在和之間,
所以,從而.
點B到直線QP的距離d=. ………12分
當時,d的最大值為.
注意到,所以點在曲線段L上.
所以,點B的坐標是. …………………………………………14分
(法2)由①可知,,結(jié)合圖6-3可知,
若點B在曲線段L上,且點B到直線PQ的距離最大,
則曲線C在點B處的切線L//QP. ………………11分
設L:,由方程組
與,聯(lián)立可得
消去y,得.
令△=0,整理,得.……12分
代入方程組,解得,.
所以,點B的坐標是. ……………………………………………14分
(法3)因為拋物線C:關于y軸對稱,
由圖6-4可知,當直線AP的傾斜角大于00且趨近于00時,直線AQ的傾斜角小于1800且趨近于1800,即當直線AP的斜率大于0且趨近于0時,直線AQ的斜率小于0且趨近于0.
從而P、Q兩點趨近于點關于軸的對稱點. ……11分
由拋物線C的方程和①的結(jié)論,
得,.
所以拋物線C以點為切點的切線L//PQ.
……………………12分
所以曲線段L上到直線QP的距離最大的點就是點A’,
即點B、點A’重合.
所以,點B的坐標是. ……………14分
科目:高中數(shù)學 來源: 題型:
3 |
AM |
AN |
查看答案和解析>>
科目:高中數(shù)學 來源:2010年北京大學附中高三數(shù)學提高練習試卷(2)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2009年北京市東城區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2009年北京市東城區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com