3
cosx-sinx寫(xiě)成2sin(x+φ)的形式,其中0≤φ≤2π,則φ=
 
考點(diǎn):兩角和與差的正弦函數(shù)
專(zhuān)題:三角函數(shù)的求值
分析:利用三角恒等變換可得
3
cosx-sinx=2sin(2x+
3
),再根據(jù)可將
3
cosx-sinx寫(xiě)成2sin(x+φ)的形式,0≤φ≤2π,可得φ的值.
解答: 解:由于
3
cosx-sinx=2(
3
2
cosx-
1
2
sinx)=2sin(
π
3
-x)=2sin[π-(
π
3
-x)]=2sin(2x+
3
),
3
cosx-sinx可以寫(xiě)成2sin(x+φ)的形式,其中0≤φ≤2π,則φ=
3
,
故答案為:
3
點(diǎn)評(píng):本題主要考查三角恒等變換,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于2的正整數(shù)),p,q∈{1,2,3,…,n},當(dāng)p<q時(shí)有ip>iq,則稱(chēng)ip,iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱(chēng)為該數(shù)組的“逆序數(shù)”,則數(shù)組(5,2,4,3,1)中的逆序數(shù)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax-lnx,a∈R.
(Ⅰ)當(dāng)a=2時(shí),求曲線(xiàn)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)f(x)在x=1處有極值,求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(k-1)x+2在區(qū)間(-1,2)上恒有f(x)>0,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)y=x1-lga在(0,+∞)增函數(shù),則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x>-1時(shí),不等式x+
1
x+1
-1≥a恒成立,則實(shí)數(shù)a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)壇子里有編號(hào)為1,2,…,12的12個(gè)大小相同的球,其中1到6號(hào)球是紅球,其余的是黑球,若從中任取兩個(gè)球,在取到的都是紅球的前提下,且至少有1個(gè)球的號(hào)碼是偶數(shù)的概率是( 。
A、
1
5
B、
4
5
C、
17
22
D、
2
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)l交橢圓
x2
16
+
y2
12
=1于A、B兩點(diǎn),且AB的中點(diǎn)為M(2,1),則直線(xiàn)l的方程是(  )
A、2x-3y-1=0
B、3x+2y-8=0
C、2x+3y-7=0
D、3x-2y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x
x2+1
的導(dǎo)數(shù)為( 。
A、y′=
1-x2
(1+x2)2
B、y′=
x3-x-1
(x2+1)2
C、y′=
1-x2
x2+1
D、y′=
x-1
x2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案