給出下列四個命題:
①函數(shù)是定義域到值域的映射;
數(shù)學公式是函數(shù);
③函數(shù)y=3x(x∈N)的圖象是一條直線;
④已知函數(shù)f(x)的定義域為R,對任意實數(shù)x1,x2,且x1≠x2,都有數(shù)學公式,則f(x)在R上是減函數(shù).
其中正確命題的序號是________.(寫出你認為正確的所有命題序號)


分析:①為假命題,函數(shù)是非空數(shù)集A到非空數(shù)集B的映射,其中A是定義域,值域是B的子集;②為假命題,函數(shù)的定義域不能為空集;③為假命題,函數(shù)y=3x(x∈N)的圖象是一條直線上的孤立的點;④為真命題,對任意實數(shù)x1,x2,且x1≠x2,都有,說明x1-x2與f(x1)-f(x2)異號,由單調性的定義可得結論.
解答:①為假命題,函數(shù)是非空數(shù)集A到非空數(shù)集B的映射,其中A是定義域,值域是B的子集;
②為假命題,不存在實數(shù)x同時滿足兩個根式有意義,函數(shù)的定義域不能為空集;
③為假命題,函數(shù)y=3x(x∈N)的圖象是一條直線上的孤立的點;
④為真命題,對任意實數(shù)x1,x2,且x1≠x2,都有
說明x1-x2與f(x1)-f(x2)異號,由單調性的定義可知f(x)在R上是減函數(shù).
故答案為:④.
點評:本題以命題為載體,考查函數(shù)與映射的關系,考查函數(shù)的單調性,知識點多,需謹慎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習冊答案